
SIEMENS

Interpreter

Lehrgang (Tu to r i a l) Bestell-Nr. C79000-M8776-C31-1

COPYRIGHT

Copyright©1983 by Digital Research. All rights
reserved . No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
m a n u a l or o therwise , without the prior writ ten
permission of Digital Research, Post Of f i ce Box 579,
Pacific Grove, Cal i fornia , 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are regis tered trademarks of
Digital Research. Concurrent CP/M, Concurrent CP/M-
86, MP/M, MP/M-86, and Personal BASIC are trademarks
of D i g i t a l Research . Intel is a regis tered
trademark of Intel Corporation. Microsoft BASIC is
a registered trademark of Microsoft Corporation.

The Personal. BASIC^Language Refer ence Manual was
prepared us fng the Dig i ta l Research TEX Text
Format t e r and pr in ted in the United States of
Amer ica.

* First Edition: April 1983 *

Foreword

This book is a tutorial for the Digital Research interpretive
BASIC system, Personal BASIC™ .

The book was written for anyone with no previous programming
experience. Its purpose is to teach you how to write computer
programs in the Personal BASIC language. The book should be read
from the beginning, and you should have access to a computer that
can run Personal BASIC.

You should try the many examples throughout the book and any
examples that come to mind. You must enter and run the example
programs and observe the results to successfully learn BASIC.
Curling up on a couch with this book and studying will not do the
job.

Section 1 explains why this book was written, and tells how
programming and BASIC fit into the computer industry. Section 2
describes using the computer as a calculator and how to save and
load programs, as well as other basic concepts. The arithmetic used
in Personal BASIC is explained in Section 3.

Because everyone makes at least a few mistakes, Section 4
describes the excellent editing facilities in Personal BASIC.
Sections 5, 6, and 7 show many of the Personal BASIC program
statements and how they are used in programs. Section 8 covers
Personal BASIC'S built-in and self-defined functions.

Section 9 explains how to handle large groups of numbers with
subscripted variables and arrays. The concepts of files, both
sequential and random, are explained in Section 10. Section 11
describes the complete debugging features in Personal BASIC and how
to use them when looking for program errors. The techniques of
program testing are discussed in Section 11.

Appendix A contains a glossary describing programming and
computer words as they relate to Personal BASIC. Appendix B is an
annotated bibliography of additional information on computers and
computer programming. Appendix C contains the answers to the
programming exercises given at the end of some sections. Appendix D
explains the error messages you see when you make an error in
Personal BASIC.

Hi

Table of Contents

f f- 1-: . -t .,
1 Introduction

1.1 Why a Personal BASIC Language Tutorial? 1-1

1.2 What is Programming? 1-2

1.3 What is BASIC? 1-2

1.3.1 Why BASIC? 1-2
1.3.2 BASIC Compared to Other Languages 1-3
1.3.3 Features of Personal BASIC 1-4

< j 1

2 BASIC Basics

2.1 The BASIC Calculator and Printer 2-1

2.2 Statement and Command Formats 2-3

2.2.1 Personal BASIC Statement Format 2-4
2.2.2 Personal BASIC Command Format 2-6

2.3 How to Save and Load Programs 2-7

2.3.1 Working and Permanent Storage 2-7
2.3.2 Personal BASIC Storage Commands 2-8

3 Personal BASIC Arithmetic . * :*• . <

3.1 What are Variables? 3-1

3.1.1 Numeric Variables 3-1
• 3.1.2 String Variables 3-4

3.1.3 Rules for Variables 3-4

3.2 Personal BASIC Arithmetic Operations 3-5

3.3 Scientific Notation 3-7

4 Editing Your Program

4.1 The Need for Editing 4-1

4.2 Editing Subcommands 4-1

4.2.1 Moving the Cursor 4-2
4.2.2 Inserting Characters 4-3
4.2.3 Deleting Characters 4-3
4.2.4 Searching for Characters 4-5
4.2.5 Replacing Characters 4-5
4.2.6 Ending and Restarting Edit Mode 4-6

Table of Contents
(continued)

-r.

5 Inputs and Outputs

5.1 Personal BASIC Input Statements 5-1

5.1.1 LET 5-1
5.1.2 INPUT 5-1
5.1.3 READ/DATA 5-3
5.1.4 RESTORE 5-6

5.2 Personal BASIC Output Statements 5-7

5.2.1 PRINT 5-7
5.2.2 TAB 5-9
5.2.3 PRINT USING 5-9

5.3 Exercises 5-10

6 Decisions and Looping

6.1 Decisions, Decisions 6-1

6.1.1 IF/THEN/ELSE 6-1
6.1.2 IF/THEN Variations 6-2

6.2 Looping Around—WHILE/WEND, FOR/NEXT 6-4

6.2.1 WHILE/WEND 6-4
6.2.2 FOR/NEXT 6-6

6.3 Exercises 6-11

7 Working with Words and Letters

7.1 What are Strings? 7-1

7.2 String Statements 7-1

7.2.1 LEN 7-1
7.2.2 MID$, RIGHT$, LEFT$ 7-2
7.2.3 VAL 7-3
7.2.4 STR$ 7-4

7.3 Comparing and Joining Strings 7-5
%

7.3.1 Comparing Strings 7-5
7.3.2 Joining Strings 7-7

7.4 Exercises 7-9

vi

Table of Contents
(continued)

8 Personal BASIC Functions

8.1 Definition of Functions 8-1

8.2 Built-in Functions 8-2

: 8.2.1 SQR(X) 8-2
8.2.2 INT(X) 8-2
8.2.3 SGN(X) 8-2
8.2.4 ABS(X) 8-3
8.2.5 RND(X) 8-3

8.3 User-defined Functions 8-C

9 Working with Groups of Numbers—Arrays

9.1 Subscripted Variables 9-1

9.2 Array Statements 9-3

9.2.1 DIM 9-3
9.2.2 OPTION BASE 9-4
9.2.3 ERASE 9-4

10 Disk Input and Output—Pile Processing

10.1 File Concepts 10-1

10.2 Sequential Files 10-2

10.3 Random Files 10-4

11 Testing and Debugging Your Program

11.1 Program Debugging 11-1

11.1.1 BREAK Mode 11-1
11.1.2 STEP 11-2
11.1.3 CONT 11-3
11.1.4 BREAK/UNBREAK 11-3
11.1.5 TRACE/UNTRACE 11-3
11.1.6 TRON/TROFF 11-4
11.1.7 FOLLOW/UNFOLLOW 11-4

11.2 Program Testing 11-5

VII

Appendixes

A User's Glossary A-l

B Annotated Bibliography B-1

C Answers to Exercises C-l

D Personal BASIC Error Messages D-l

Tables and Figures

Tables
;

2-1. Arithmetic Operations 2-3

3-1. Variable Declaration Labels 3-3

7-1. Operators for String Comparisons 7-5

8-1. Personal BASIC Math Functions 8-5

D-l. Personal BASIC Error Messages D-l

Figures
t

2-1. Working and Permanent Storage 2-8

3-1. Memory Location Assignments 3-2

6-1. Nested FOR/NEXT Loops 6-8

9-1. Two-dimensional Array 9-2

V I I I

Section 1
<- Introduction*

1 . ". , - <v ., -»Sr-

1.1 Why a Personal BASIC Language Tutorial?

Not everyone who wants to use a computer is a programmer.
Digital Research created Personal BASIC, an easy to use version of
the BASIC programming language, and this tutorial book to help those
without prior programming knowledge get started in programming.

' '•' Another book, The Personal BASIC Language Reference Manual,
contains more detailed descriptions of the Personal BASIC statements
and commands. Keep the reference manual with you as you continue
through this book.

If you have BASIC programming experience, you might need only
the reference manual to show you the unique features of Personal
BASIC. However, if your BASIC programming experience is not recent,
this tutorial is a good manual for you.

Learning a computer language is much like learning a foreign
language, although much easier. BASIC has a simple vocabulary, a
grammatical structure, and rules of use, just like any other
language. - • - '• •

The secret of learning any language, computer or foreign, is to
practice speaking it. You will speak to BASIC through your computer
or terminal keyboard. Practice as you learn by doing the examples
and you will find that remembering is much easier. You might make
mistakes as you progress, but they are easy to correct and
hopefully, you will not make the same mistake twice.

A Few Things to Remember

• The examples and programs use colored type to indicate what YOU
type on your computer and what your computer returns.

• The symbol <cr> means that you should press the carriage return
key. It might be called RETURN or Enter on your keyboard. You

^~ must press <cr> to signal your computer that you have finished
your input and now it is the computer's turn to do some work. f .- _ r̂ .--*.. -

• The control or CTRL key enters codes not available on the
keyboard and not visible on your screen. When you see CTRL-C,

"' ' hold the CTRL key down while you press the C key. Think of the
CTRL key as a super shift key with a different function than

v ''*' the SHIFT key.

1-1

Personal BASIC Tutorial 1.1 Why a Tutorial?

• Sometimes when typists use terminals for the first time, they
use some letters for numbers. DO NOT use a lower-case L for 1,
or the letter O for zero.

• Paragraphs beginning with the word Note: are very important.
Be sure to study these paragraphs. f... ,,% . <>c ,

1.2 What is Programing? , , ,"" * '\.. r * . . , ,-,

Programming is the writing of descriptions and instructions
that tell the computer what operations to perform in solving a
problem. The programmer can use many languages to accomplish this
purpose. BASIC is just one of the language tools used by
programmers to solve problems.

This tutorial teaches you how to use much of the BASIC computer
language. As you learn BASIC, remember that learning a language is
only part of learning how to program. Knowledge of English does not
mean that you can write a best-selling novel. There are hundreds of
books available on programming techniques. You must study and
practice writing programs to become a good programmer. Analyzing a
problem and then planning how a programming language can solve the
problem is a major part of the programmer's duties.

In many situations, defining the problem and planning how to
solve the problem is more challenging than writing the program
instructions.

1.3 What is BASIC?

Before we begin to learn the nuts and bolts of BASIC
programming, let's take a few moments to see where BASIC came from
and how it compares with other computer languages.

*>

1.3.1 Why BASIC?
..» t : "-,

Back in the old days of computer programming (the early 60's),
there was no easy method of communicating with a computer. Several
languages existed, but they were difficult to learn and use. Two
professors at Dartmouth College saw the need for a language that
could be easily learned and operated. They designed the format of
BASIC and with the help of their students created BASIC, primarily
to use in teaching programming.

The use of BASIC has increased over the years, and today it is
the most widely used computer language. Nearly every computer maker
offers a version of BASIC, and it is part of the hardware of many
microcomputers.

While BASIC is a universal computer language, all BASICS are
not exactly alike. Once you are familiar with a version of BASIC,
such as Personal BASIC, you can convert other BASIC programs to run

1-2

Personal BASIC Tutorial 1.3 What is BASIC?

on your system without too much difficulty. Personal BASIC runs
under the CP/M* operating system, so many BASIC programs on other
CP/M computers will run on your system with few or no changes
required.

Because BASIC is used by so many people on so many computers,
thousands of programs are available to you. The world of BASIC is
indeed an open door into the world of computing.

1.3.2 BASIC Compared to Other Languages

BASIC is one of many computer languages available today.
BASIC'S main advantages are that it is easy to learn and easy to
use. Another big plus for BASIC is that it is available for almost
every computer system in use.

You have probably heard of some of the more popular computer
programming languages such as B'ORTRAN, Pascal, COBOL, and PL/I.
Here is a brief description of these languages.

FORTRAN

FORTRAN was released by IBM in 1957, making it the first high-
level language available. It closely follows mathematical and
algebraic notation. FORTRAN is most powerful in solving number
crunching problems and is still widely used for scientific
calculations.

COBOL

COBOL was developed in 1960 by the Department of Defense and
several civilian computer firms. COBOL is the major language used
for solving business problems on medium to large computers. Some
versions of COBOL will operate on microcomputers. COBOL's strength
is in file manipulation and handling large volumes of data. It uses
English-like statements and is easy to read.

PL/I was introduced by IBM in 1965 as an attempt to combine the
best features of FORTRAN, COBOL, and ALGOL. PL/I is very complex
and handles scientific processing and business file manipulations
very well. Versions of PL/I are used by many software firms for
program development.

Pascal

Pascal was made available in 1970. Pascal is a structured
language, meaning that programs flow logically from beginning to end
without abrupt shifts possible in languages such as BASIC or

1-3

Personal BASIC Tutorial 1.3 What is BASIC?

FORTRAN. Many educators recommend Pascal as a first programming
language.

f *>
S

1.3.3 Features of Personal BASIC

Personal BASIC is one of many in the growing assortment of
programming languages offered by Digital Research. Personal BASIC
varies from other BASIC systems available from Digital Research. It
is an interpretative BASIC. This means that Personal BASIC responds
immediately to your input. Each statement is analyzed for correct
format at the time it is entered, and an error message explains any
error in the line just entered. When the program is completed or
partially completed, only a RUN command is necessary to run the
program.

Of course, this simplifies program testing. You can make
changes very quickly and run your program to be sure the changes
work. You can keep changing your program in working storage until
it does what it is supposed to. The program can then be put into
permanent storage and retrieved whenever you want to use it.

The family of Digital Research BASIC systems is designed for
maximum compatibility in the changing 8-bit and 16-bit environment.
Staying within the CP/M BASIC family ensures easier program
conversion whenever hardware is upgraded or replaced. Changes could
be required to convert a program from one Digital Research BASIC to
another.

End of Section 1

1-4

Section 2
BASIC Basics

Our first venture into programming shows how BASIC can do
things for you even without a program. This section reviews the
formats of statements and commands. You will learn the concepts of
working versus permanent storage, and how BASIC saves and loads
programs.

s

2.1 The BASIC Calculator and Printer

BASIC can do arithmetic and printing operations for you just
like a calculator. These examples introduce you briefly to the
PRINT statement. PRINT is explained in greater detail in Section 5.

If you want a system disk with Personal BASIC and CP/M on the
same disk, see Appendix C in the Personal BASIC Language Reference
Manual for instructions on how to create this disk.

Start by bringing Personal BASIC into the memory of your
computer. Use the following three steps:

1) Start or boot CP/M following the instructions for your
computer.

2) When you see the CP/M prompt A>, type BASIC. If you are using
separate disks for Personal BASIC and CP/M, and Personal BASIC
is on disk B, return control to disk B, A>B:, before typing
BASIC.

3) Personal BASIC should load and give the Ok prompt on your
terminal. Personal BASIC responds with an Ok after each
operation. This means that everything is OK, and Personal
BASIC is ready for another request.

4) Return to CP/M from Personal BASIC by typing the word SYSTEM
after the Ok prompt and <cr>.
(-,

Personal BASIC is now ready for your instructions. Now type

Ok PRINT "MOONBEAM"

and press <cr>. Remember, the computer does not know that you want
something done until you press <cr>.

2-1

Personal BASIC Tutorial 2.1 BASIC Calculator and Printer

The computer prints the word:

MOONBEAM

Notice that you typed quotation marks around the word,
MOONBEAM. The PRINT statement only prints the information enclosed
in quotation marks.

Let's print some more words, or print anything that you would
like to see on your terminal. Do not forget the quotation marks.
Type the PRINT statements in the next example. The output from the
PRINT statement appears on the next line.

Ok PRINT "ROSES ARE RED"
ROSES ARE RED
Ok PRINT "VIOLETS ARE BLUE"
VIOLETS ARE BLUE

If you receive an error message instead of the beautiful
poetry, you could have misspelled PRINT or left out one or more
quotation marks.

Let's see how PRINT handles numbers. You can use the CAPS LOCK
Key for these and following examples, if there is one on your
keyboard. CAPS LOCK on a computer keyboard prints letters in upper-
case, and numbers as lower-case numbers. This makes it convenient
to use CAPS LOCK when typing upper-case letters and numbers in the
program examples to follow. You must use the SHIFT key to type
other upper-case characters such as *, +, (,), and ~ . Type these
PRINT statements and observe the output.

Ok PRINT "230"
230
Ok PRINT 230
230

This shows you that quotation marks are not needed to print
numbers. The space in front of the number printed in the last
example is reserved for the sign. A space means plus. If 230 was
minus, it would be printed as -230.

Now we can try some arithmetic with PRINT. Type this:

Ok PRINT 5-1-7
12

The answer, 12, prints on the next line. If nothing printed,
did you press <cr>?

Personal BASIC can do the six arithmetic operations listed in
Table 2-1.

2-2

Personal BASIC Tutorial 2.1 BASIC Calculator and Printer

Table 2-1. Arithmetic Operations

Operation Symbol

Addition t Use the plus sign (4-) .
~. >'* j '

Subtraction ^. Use the minus sign (-).

Multiplication Use an asterisk (*).
C» -' •<- !

Division ^>rf v ^ Use a slash (/) .

Exponentiation Use a caret (").

Combination Any or all of these
operations can be
combined with each other

Let's try some examples. Enter the PRINT operations as shown.
The answer prints on the next line.

Ok PRINT 121+130
251

Ok PRINT 77-23
54

Ok PRINT 15*5
75

Ok PRINT 42/7
6

Ok PRINT 5~3
125

Ok PRINT 7+2-l*9/3~2
8

Ok PRINT 456-649
-193

2.2 Statement and Command Formats

BASIC statements are the instructions that form the BASIC
program. BASIC commands are used outside the program. They tell
BASIC how to manipulate the programs in and out of the storage areas
and do other useful things like listing your program and renumbering
your lines.

Now we will look at a simple BASIC program. The statements and
commands are explained in more detail in other sections. Program
CALAVG (CALculate AVeraGe) calculates and prints the average of any
three numbers you type. The program is then saved to your permanent
storage. Type in the program as shown. Press <cr> after each
statement and each command.

2-3

Personal BASIC Tutorial 2.2 Statement and Command Formats

When you type the RUN command and <cr>, Personal BASIC prints a
question mark ?. This means that the program is asking you to type
in the first of the three numbers you want to average. Type in the
first number, followed by a <cr>; you will then see another question
mark. Enter the second number and repeat for the third. When you
see "THE AVERAGE IS 43", the program has finished running. Type
SAVE and <cr> to save the program for later use.

Ok NEW CALAVG ̂ NEW clears working storage
Ok 5 REM AVERAGE OP 3 NUMBERS and names the program
Ok 10 INPUT A
Ok 20 INPUT B
Ok 30 INPUT C
Ok 40 AVG=(A+B+C)/3
Ok 50 PRINT "THE AVERAGE IS";AVG
Ok 60 END
Ok RUN -̂ RUN tells Personal BASIC
? 45 , to run the program

User inputs? 18
? 66
THE AVERAGE IS 43
Ok SAVE ̂ SAVE sends program CALAVG

to permanent storage

All Personal BASIC programs should have END as their last
statement. END closes all files, as we will see later. The use of
END is good programming practice.

The REM statement is used only to comment about the Personal
BASIC program and has no effect on the operation of the program.
REM statements help others understand your program. They also help
you remember what is happening in your program when you look at it
sometime in the future. An apostrophe ' can be used in place of
REM. Line 5 in program CALAVG could have been written:

Ok 5 'AVERAGE OF 3 NUMBERS.

You can add a remark after your statement. For example,

Ok 40 AVG= (A+B+O/3 'Calculate the average

Everything after the apostrophe is ignored when the program runs.

2.2.1 Personal BASIC Statement Format

You probably noticed several things about the statements in the
previous example. The following are the rules for BASIC statements:

2-4

Personal BASIC Tutorial • •, " 2.2 Statement and Command Formats

• Statements must start with a line number.

• Statements must be spelled correctly.

• Statements must be separated from the rest of the line by at
least one space on either side.

• More than one statement can be written on a line. The
statements are separated by a colon, :.

Here are examples of correct and incorrect Personal BASIC
statements:

Correct Incorrect

20 GOTO 100 GOTO 100 (No line number)

30 READ A 30 READA (At least one space is
required on each side
of a statement)

40 PRINT C+D 40 PRNT C+D (Statement misspelled)

50 A=4:B=32 50 A=4 B=32 (A colon must separate
the statements)

The incorrect examples produce an error message immediately
after you press <cr> at the end of the line. Correct errors by
typing the line again (this erases the original line), or backspace
to the error and retype. Section 4, "Editing Your Program,"
describes the line-editing features of Personal BASIC.

Line Numbers

Each BASIC statement must start with a line number from 0
through 65529. The program runs in numerical order by line number.
You can type the statements in any order, but they run in line
number order.

Separate your line numbers by some interval. For example,
start with 10 and number your lines 10, 20, 30, etc. You will
understand the reason for this after you have written a few
programs. This practice lets you insert a line between two other
lines. In example program CALAVG, you could write a statement using
line 25 and it would be inserted between lines 20 and 30.

Note: use LIST after you add or delete lines. LIST arranges your
program in numerical order by line number. It is good practice to
use LIST to verify program changes and to inspect your program as
you are typing it. See Section 2.3.2 for more information on LIST.

2-5

Personal BASIC Tutorial 2.2 Statement and Command Formats

When your program is complete, Personal BASIC has a command
called RENUM that renumbers your program. You can specify the
starting line number and the interval. If no line number is
specified, the first line number is 10; line numbers are incremented
by 10. The following is an example of a Personal BASIC program
before and after a RENUM command: - .

Program before RENUM .. , , .. , ^

List Of EXAM.BAS

3 AMI = 16
12 TOT = 13
20 SUM = AMI + TOT
24 PRINT "SUM IS",-SUM
33 END

Ok RENUM
Ok LIST

Program after RENUM

List of EXAM.BAS

10 AMI = 16
20 TOT = 13
30 SUM = AMI + TOT
40 PRINT "SUM IS";SUM
SO END

2.2.2 Personal BASIC Command Format

The commands used in the CALAVG program were NEW, RUN, and
SAVE. You will learn many other commands in the next sections.
Here are the rules for BASIC commands:

• Commands do not have line numbers.
• Commands are followed by a <cr>.
• Commands must be spelled correctly.
• Some commands require additional information. ~". lf,

These are examples of correct and incorrect Personal BASIC commands:

* r<

Correct Incorrect

NEW 20 NEW (Line number included)

DELETE 20-50 DELETE (No line numbers given)

RENUM RENUMB (Command misspelled)

DELETE -50 DELETE50 (No space after command)

2-6

Personal BASIC Tutorial 2.3 How to Save and Load Programs

2.3 How to Save and Load Programs

Before you begin to learn the various Personal BASIC statements
and write programs, you should have some knowledge of how Personal
BASIC uses your computer's memory and external storage to store and
retrieve programs. We will study the concepts of permanent and
working storage, and learn how to use the commands controlling
program storage.

>

2.3.1 Working and Permanent Storage

As you type a Personal BASIC program, it is placed into your
computer's memory, a temporary or working storage. Temporary means
that if you turn off your computer or have a power failure, the
program in working storage is lost forever. This internal temporary
memory is also called Random Access Memory (RAM).

Often you will want to save your program to use after lunch,
tomorrow, or next week. Programs are saved into permanent storage,
usually on a floppy or hard disk. Programs saved in permanent
storage can be retrieved and run or revised whenever you wish.

Figure 2-1 illustrates how working and permanent storage
interact. The programmer is typing a program into working storage.
When the program is complete, it moves to permanent storage with the
SAVE or REPLACE command. When the program is needed for execution
or revisions, it is retrieved from permanent storage and enters
working storage with the OLD, or RUN command. The MERGE command
combines a program in permanent storage with the program in working
storage.

The NEW command clears working storage and makes it ready for a
new program. ERA deletes programs from your permanent storage, and
NAME renames your program. These commands are discussed in Section
2.3.2.

2-7

Personal BASIC Tutorial 2.3 How to Save and Load Programs

PERMANENT
STORAGE

(DISK)

WORKING STORAGE
IN MEMORY N.

V .. H r
NAME
(CHANGES PROGRAM NAMES)

ERA
(DELETES PROGRAMS)

NEW
(CLEARS WORKING STORAGE)

Figure 2-1. Working and Permanent Storage

2.3.2 Personal BASIC Storage Commands

Personal BASIC commands SAVE, REPLACE, MERGE, OLD, and RUN move
your program between working and permanent storage. Commands NEW,
DELETE, ERA, NAME, DIR, and LIST help you manage your program files.
LIST is described because it helps you see what is happening in
working storage.

NEW or NEW <filename>

Use the NEW command when you want to start writing a new
program. NEW erases anything in working storage and can give your
new program a name. If you do not name your program with NEW, you
must name it with the SAVE command if you place it into permanent
storage.

Type in the following program. NEW clears working storage and
names the program "CARDS".

2-8

Personal BASIC Tutorial 2.3 How to Save and Load Programs

A J

Ok NEW CARDS -<
Ok 100 LET CARD=7
Ok 110 LET SUIT$=BHEARTS"
Ok 120 PRINT CARDrSUIT$
Ok 130 END
Ok . p .-...- n. .

Clears working storage and
names the program "CARDS"

Program CARDS

Note: it is good practice to use NEW before you start any program.
Otherwise/ your new program might be mixed with parts of an old
program. Personal BASIC treats all the lines in working storage as
one program.

SAVE or SAVE <filename>

SAVE moves the Personal BASIC program currently' in working
storage to permanent storage. The name of the program being saved
cannot be in permanent storage when you give the SAVE command. If
you want to save a program under the same name as a program already
in permanent storage, use the REPLACE command.

SAVE is usually used after you have started a new program with
NEW. You must use a program name with SAVE if the program was not
named with NEW. In example program CARDS, add a SAVE command after
the END statement and CARDS is put into permanent storage. The
complete terminal dialogue is listed below:

Ok NEW CARDS
Ok 100 LET CARD=7
Ok 110 LET SUIT$="HEARTS"
Ok 120 PRINT CARD,SUITS

130 ENDOk
Ok SAVE SAVE puts program CARDS into

permanent storage

The program named CARDS is now stored in permanent storage.
The command DIR gives you a list of all the files in your permanent
storage. Type DIR now to make sure CARDS was stored. The DIR list
should look something like the next example. The items will vary,
depending on what is in permanent storage.

B>DIR

B: BASIC
B: CALAVG
B: CARDS

CMD
BAS
BAS

Your first program, CALAVG, is also listed. The DIR list shows
your programs as CARDS.BAS and CALAVG.BAS. Personal BASIC adds a
filetype, BAS, to all Personal BASIC program filenames in permanent
storage. This helps Personal BASIC and you recognize Personal BASIC
files. Filetypes can be up to three characters long or omitted.

2-9

Personal BASIC Tutorial 2.3 How to Save and Load Programs

REPLACE or REPLACE <filename>
, v>

REPLACE works just like SAVE, except that REPLACE replaces a
program with the same name in permanent storage. If no program name
is given, REPLACE uses the name of the program in working storage.
REPLACE is usually used after the OLD command. The program in
permanent storage being replaced is erased.

Note: it is good programming practice to use the REPLACE command
every ten or fifteen minutes when working on a program. This habit
keeps your blood pressure down if there is a power failure after you
typed 200 lines of a Personal BASIC program. If you remember to use
REPLACE, the most you lose is the last ten or fifteen minutes of
work.

OLD <filename>

OLD is the opposite of SAVE. OLD clears working storage and
then moves a program from permanent storage to working storage.
Let's use OLD to retrieve program CALAVG from permanent storage.
Give the command:

OLD CALAVG

OLD erased program CARDS from working storage and moved program
CALAVG from permanent storage to working storage. Programs CARDS
and CALAVG are unchanged in permanent storage. The LIST command,
explained in the next section, will prove to you that CALAVG is in
working storage.

LIST

How do we know that CALAVG is in working storage? There is a
handy command, LIST, that prints the program in working storage.
List prints the entire program or specific lines in numerical order
by line number. The following is the LIST command format:

LIST

LIST 520

LIST 40-100

LIST 230-

LIST -500

lists all of your program.

lists only line 520.

lists lines 40 through 100.

lists lines from 230 to the end.

lists lines from the beginning through 500

Now type LIST, and the statements you typed for program CALAVG
are printed.

2-10

Personal BASIC Tutorial 2.3 How to Save and Load Programs

MERGE . . . , , .
— r-

MERGE combines the program in working storage with the
specified program in permanent storage. If a line number in the
program coming from permanent storage is the same as a line number
in working storage, the line in working storage is replaced. The
following command merges the program NEWPROG with the current
program in working storage:

< \

Ok MERGE NEWPROG

Here is an example of using MERGE. Program ADD is in working
storage, and program NEWPROG is brought from permanent storage to
merge with program ADD. Each program is listed, the MERGE command
given, and then a listing is shown of the merged programs.

If you want to try the example, type programs ADD and NEWPROG
and save them with SAVE.

Ok OLD ADD
Ok LIST
List of ADD. HAS

10 A=10
20 B=20
30 PRINT A + B
40 END

This is a listing of NEWPROG in permanent storage:

40 FOR E=l to 10
50 PRINT "Personal BASIC Merge"
60 NEXT E
70 END

The merge command is given with program ADD in working storage

Ok MERGE NEWPROG

The following is the resulting program, still called ADD.

Ok LIST
List of ADD.BAS

10 A=10
20 B=20
30 PRINT A + B
40 FOR E=l TO 10
50 PRINT "Personal BASIC Merge"
60 NEXT E
70 END

2-11

Personal BASIC Tutorial 2.3 How to Save and Load Programs

Notice that line 40 in program NEWPROG replaced line 40 in
program ADD. Program NEWPROG is still unchanged in permanent
storage. A REPLACE command stores the newly merged program ADD into
permanent storage, replacing existing program ADD.

MERGE is very useful for adding special-purpose routines or
programs to the program you are writing. MERGE saves lots of typing
time. Remember that the line numbers must be planned so that you do
not erase any lines in working storage that you want to retain in
your program.

RUN or RUN <filename>, <line number>

RUN by itself runs the program in working storage. RUN with a
program name loads the program from permanent storage and runs it.
RUN with a comma and line number runs the program in working
storage, starting at the given line number. When RUN is given with
a program name, working storage is cleared. These are the RUN
command formats:

RUN runs the program in working storage.

RUN CALAVG clears working storage, brings program
CALAVG into working storage and runs it.

RUN CALAVG, 30 clears working storage, brings program
CALAVG into working storage and runs it,
starting at line 30.

RUN, 30 runs the program in working storage,
starting at line 30.

Bring program CALAVG into your working storage with the OLD
command. Type RUN to run CALAVG. You will see the question mark
asking for the first number to average, which means that program
CALAVG is running. This appears on your screen:

Ok RUN

We are through with the program for now, so return control to
Personal BASIC with CTRL-C. CTRL-C stops a running program, and you
will see this line:

— Break — at line 10
Br

The program stopped at line 10 with the Break prompt. Return
control to Personal BASIC with another CTRL-C.

2-12

Personal BASIC Tutorial . > ~ 2.3 How to Save and Load Programs

DELETE <line number> <line number>

DELETE erases lines from your program in working storage. You
can delete any one line by typing the line number and <cr>. Here
are some examples of DELETE:

DELETE 30-80 deletes lines 30 through 80.

DELETE -70 deletes all lines up to and
including line 70.

DELETE 20-50 f 100-150 deletes lines 20 through 50
and 100 through 150.

j. .' * . ' j

<t:.ri 80 > deletes line 80 only.
• -O • - , • - - " *•»• - . . - - ! ' ? .

Use DELETE to delete some lines from program CALAVG. Make sure
CALAVG is in working storage and type this command:

Ok DELETE 20-50

Use LIST to prove that lines 20, 30, 40 and 50 were deleted.
Your listing is the following:

Ok LIST

List of CALAVG. BAS

5 REM AVERAGE OF 3 NUMBERS
10 INPUT A
60 END

Remember that program CALAVG is now labeled CALAVG. BAS because
a filetype (BAS for Personal BASIC files) is automatically added to
the filename of each program file as it is stored into permanent
storage .

Do you know how to recreate the original CALAVG program in your
working storage? When you deleted statements 20, 30, 40, and 50,
they were deleted from working storage. The original program CALAVG
is still unchanged in permanent storage. Bring CALAVG into working
storage with the OLD command. LIST the program to make sure all of
the statements aie still there.

2-13

Personal BASIC Tutorial 2.3 How to Save and Load Programs

ERA <filename> - -'*

ERA erases program files from permanent storage. This command
erases program CARDS from permanent storage. Once erased, the
program cannot be recovered.

Ok ERA CARDS

Use DIR to verify that CARDS was erased.

NAME <old filename> AS <new filename>

NAME changes the name of a file in your permanent storage. The
old filename must exist and the new filename must not exist. The
file is unchanged after this command, but has a new name. The
filenames must be enclosed in quotation marks. Let's rename your
CALAVG program to AVERAGE. Type in this command:

Ok NAME "CALAVG" AS "AVERAGE"

Use DIR to see that the program is now named AVERAGE. Now,
rename AVERAGE to the original name, CALAVG. The NAME command is

Ok NAME "AVERAGE" AS "CALAVG"

Verify the change with DIR.

End of Section 2

2-14

Section 3
Personal BASIC Arithmetic

Many people believe that you have to be a mathematician to
operate or program a computer. Do not believe them. Anyone can
•aster the concepts of programming.

In this section, we will discuss variables and how they are
used in BASIC, the LET statement, and the various arithmetic
operations possible in BASIC. Then, you learn in what order BASIC
computes expressions and how the "E" notation is used to indicate
very large or small numbers. ,,

3.1 What are Variables?

A variable is the name given to a quantity that can assume
different values during the running of a program. The two types of
variables are numeric variables, and string variables. Read this
section carefully, because these ideas are used in the following
sections.

3.1.1 Numeric Variables

In line number 50 of a Personal BASIC program, R is the name of
a numeric variable.

50 LET R = 15

Variable means that you can assign almost any value to R. In the
LET statement shown, R is assigned the value, 15. Personal BASIC
does not require the word, LET, so we do not use LET in future
examples to save time and fingers. See Section 5.1.1 for more
information about the LET statement.

Inside the computer, Personal BASIC assigns a memory space the
name R and puts the number 15 into memory space R. The variable R
remains equal to 15 until you assign another value to R. Compare a
variable to a post office box. The number of the box never changes,
but new mail is put into the box almost every day.

The following statements show how memory changes when variables
are assigned during a progran run.

3-1

Personal BASIC Tutorial 3.1 What are Variables?

GROSS

10 GROSS=1500

20 TAX=.2*GROSS

30 MISC=100

40 NET=GROSS-TAX-MISC

50 PRINT NET

TAX

MISC

NET

The v< ~a,e, 1500, is placed
into a memory location
label* 3 GROSS.

The tc x value is computed
and placed into a location
labeled TAX.

Variable MISC is assigned
a value of 100.

NET is calculated and the
value put into location
NET.

The variable values are
unchanged after a PRINT
statement.

Figure 3-1 shows how memory looks after the above statements
are run.

GROSS

1500

TAX

300

MISC

100

NET

1100

AN 1(U

Figure 3-1. Memory Location Assignments

All of the variables retain their values until another value is
assigned to the variable. For example, if you wanted to compute
GROSS in multiples of 100, add 100 to GROSS and repeat the
calculations. Add 100 to GROSS like this:

GROSS=GROSS+100

The value in the memory location assigned to GROSS is now:

GROSS

3-2

Personal BASIC Tutorial "M <*,.at are Variables?

In BASICr the equal sign does not ,i.« an *~hc same as it does in
arithmetic. The equal sign means to compute whatever is on the
right of the equal sign and store the value ; .to the variable on the
left side.

- ' • • ' • - -: - ' : ; :.••" -, < '
A name for a variable in Personal BASIC can be up to 31

characters. The characters must be o-ily letters, numbers, or
periods. The first character must be a letter. These are legal
variables:

RT357U X4 GROSSPAYLESSFICA Z4Y7.F

Numeric variables can be labeled as integer, single precision,
or double precision. Single precision is sufficient for most
applications, including business calculations, but double precision
is sometimes desired for scientific work.

' The labels used to indicate the types of variables are listed
in Table 3-1.

Table 3-1. Variable Declaration Labels

Label

I

1

%

Type

Single Precision

. i Double Precision

Integer

Example

A! or A

SCALE2I

QE5R%

Section 2 of the Personal BASIC Language Reference Manual
describes the types of variables in more detail.

If no label is included, the variable is single precision. In
the examples in this book, all numeric variables are single
precision.

Numeric variable types can be assigned in your program by
several Personal BASIC statements. They are DEFINT, DEFSNG, DEFDBL,
and DEFSTR. These statements are described in the Personal BASIC
Language Reference Manual, Section 5.

"*' ' Here are few things to keep in mind if you are going to use
numeric variable types other than single precision.

• Double precision gives higher accuracy, but requires
more storage space.

• The more precision, the slower the computation time.
• Integer variables run faster than the other types.

3-3

Personal BASIC Tutorial 3.1 What are Variables?

3.1.2 String Variables

Computers work with letters, symbols, and numbers. A group of
letters and symbols is called a string. Numbers can also be used in
strings. The variables used with strings are called string
variables. String variables can contain up to 255 characters. They
have names, just like the numeric variables. The names follow the
same rules, except that they end with a dollar sign $. Here are
some examples of string variable names:

A$ NAME$ RX4632T$ ET$

Variable A is not the same as variable A$. Both can be in the
same program. When you set a string variable to a value, the value
must be enclosed in quotation marks. If you want to store the name
"George Washington" in string variable NAME$, the statement is

NAME$ = "George Washington"

String variables print just like numeric variables. The
statement

PRINT NAME$

produces this output:

George Washington

The contents of string variables can be manipulated in many
ways. Section 7 describes in detail how to use string variables.

3.1c3 Rules for Variables

Here are some rules to remember about variables:

Any numeric variable is zero until assigned a value.
When a variable is assigned a value, the previous value is
lost.
Variable names can be up to 31 characters long.
Variable names must start with a letter.
Variable names must be made up of only letters, numbers, and
periods.

• Numeric variables are single precision unless declared
otherwise. , , .

Here are some examples of these rules. Type them into your
computer if you want to see what they do. Personal BASIC treats
upper- and lower-case the same. Variable A means the same as
variable a. In the example below, TRASH can be typed trash or TrAsH
and still be the same variable.

3-4

Personal BASIC Tutorial 3.1 What are Variables?

Ok TRASH=16 Variable TRASH is set to 16
Ok R12$«'LOVK* String variable R12$ is set to LOVE
Ok PRINT TRASH
16

Ok PRINT R12$
LOVE

* Ok TRASH»127 ; Variable TRASH is reset to 127
Ok PRINT TRASH
127 The value, 16, was replaced by 127

Ok PRINT F Variable F is zero, because nothing
0 ' has been assigned to F

Ok TOTAL=TRASH+555 Variable TOTAL is assigned the value
Ok PRINT TOTAL 682, equal to the sum of variable
682 TRASH and 555.

3.2 Personal BASIC Arithmetic Operations

If you started this book from the beginning, you learned in
Section 2.1 that Personal BASIC does six arithmetic operations.
They are

addition
subtraction
multiplication
division
exponentiation
combinations of the above

Exponentiation is a number raised to a power. For example, 4
raised to the third power is 4*4*4 or 64, and is written as 4 . Ten
to the fourth power is 10 , 10*10*10*10, or 10000.

Personal BASIC calculates arithmetic formulas a little
differently than we do with a calculator and pencil. The important
thing about Personal BASIC arithmetic is the order in which the
calculations are made. This order is sometimes called precedence.
In this simple calculation,

PRINT 6 + 9/3

the answer is 5 or 9, depending on the order used to make the
calculations. If you add 6 and 9 and then divide by 3, the answer
is 5. If you first divide 9 by 3 and then add 6, the answer is 9.
Rules do exist for the order of calculations.

Personal BASIC does arithmetic operations from left to right,
in the following order:

1) exponentiation
2) multiplication and division
3) addition and subtraction

3-5

Personal BASIC Tutorial 3.2 Arithmetic Operations

Look at this example:

PRINT 6+8^2/4-3

Personal BASIC first looks for exponentiation. There is one
(8^2) and it is calculated first. That leaves us with the
following:

6+64/4-3

Next, Personal BASIC looks for multiplication or division and
performs the calculation 64 divided by 4. Now the formula is

6+16-3

Personal BASIC completes the calculation by performing the addition
and subtraction, giving the final answer of 19.

Equally important are the rules used by Personal BASIC for
handling parentheses. Parentheses can modify the precedence of
calculations. The rules are simple:

• Calculations within parentheses are done first, using the rules
of precedence already described.

• If there are parentheses within parentheses, the innermost
parentheses are calculated first.

This example shows how Personal BASIC handles parentheses:

8+(6f(3+4)-3~2)

Personal BASIC scans from left to right and finds a set of
parentheses within another set. The inner parentheses are completed
first, leaving the following:

8+(6+7-3~2)

The portion within the parentheses is calculated. The
exponentiation is done first, followed by the addition and
subtraction. The result is

8+4

and the final answer is 12.

Almost all versions of BASIC use these rules of order when
calculating formulas.

3-6

Personal BASIC Tutorial 3.3 Scientific Notation

3.3 Scientific Notation

Do not worry too much about scientific, or E notation unless
you work with lots of very large or small numbers. You should know
something about this subject because sooner or later, one of these
numbers will appear in your output.

Personal BASIC can print only six digits of the result of an
arithmetic computation. Some way is needed to print very large
numbers and very small numbers. Personal BASIC cannot print
computation results like these:

7943000000000. 0.0000000481

Personal BASIC prints these numbers as:

7.943E+12 and 4.81E-8

For the large number, E+12 means that the decimal point has to
be moved 12 places to the right of the existing decimal point to
convert to the full number. This is how to make the conversion:

7.943E+12 Original E Notation.

7.943000000000. Count 12 places to the right and
1 add zeros as necessary.

12 places — ̂-

7943000000000. The converted number.

Use the same method of converting the small number, except move
the decimal point to the left of the existing decimal point.

Here are the rules for changing from E to decimal notation.

• If the sign is plus, move the decimal point to the right as
many places as the number after E.

• If the sign is minus, move the decimal point to the left as
many places as the number after E.

End of Section 3

3-7

Section 4
Editing Your Program

4.1 The Need for Editing

In the following sections, you are asked to type several
programs. Even experienced programmers press the wrong keys, change
lines, and insert lines in a program. There are both time-consuming
ways and easy ways to make these changes. Personal BASIC provides a
comprehensive editor which saves you time when program revisions are
necessary. The Personal BASIC Edit Mode is unique because it can be
entered when you are writing program statements or while you are
debugging (finding program errors) .

You can use an easy, but sometimes time-consuming method of
making changes. This method is sometimes the best way. For
example, if you want to change line 100, retype the revised line
100, press <cr>, and the original line 100 is replaced by the line
100 you just typed. Or, you can backspace to your error and retype
it. EDIT usually saves time over these methods because you do not
have to retype an entire line, and you can make changes quickly
anywhere in the program. Experience tells you when to use EDIT.

4.2 Editing Subcommands

This section shows you enough EDIT subcommands to help you do
the sample programs. A complete description of EDIT is in the
Personal BASIC Language Reference Manual.

The Edit Mode subcommands can do the following functions:

move the cursor left and right
insert characters
delete characters
search for characters
replace characters
end and restart Edit Mode

We need a program to practice editing on, so bring program
CALAVG into your working storage using the OLD command. Do the
editing examples and become familiar with editing techniques. Here
is a listing of CALAVG:

4-1

Personal BASIC Tutorial 4.2 Editing Subcommands

Ok OLD CALAVG . :
OK LIST
List of CALAVG.BAS

5 REM Average of 3 Numbers
10 INPUT A
20 INPUT B - *
30 INPUT C
40 AVG=(A+B+C)/3
50 PRINT "THE AVERAGE IS";AVG
60 END

Type EDIT to enter the Edit Mode. Follow EDIT with a space and
the line number you want to edit. EDIT followed by a space and a
period gives you the line number you are currently on or the line
number you just entered. This command brings in line 40 for
editing:

EDIT 40

EDIT followed by a space and a period gives you the line just
entered or the line you are working on, ready for editing.

EDIT .

Type EDIT 40. EDIT prints line 40 and an edit line like this:

Ok EDIT 40 ^ EDIT Command
40 AVG=(A+B+C)/3 ^ Line being edited

Ed ^ Edit line

Line 40 is now ready for editing. The editing subcommands are
placed in the edit line.

4.2.1 Moving the Cursor

Move the cursor to the right with the Space Bar and to the left
with the BACKSPACE key (Rubout key on some terminals). There are
several edit subcommands that move the cursor. Press <cr> after
each subcommand character.

Subcommands L and R

L moves the cursor left to the beginning of the edit line. R
moves the cursor right to the end of the edit line.

Subcommand X

X positions the cursor to the end of the line you are editing
and enters Insert mode. X is usually used to position the cursor
before adding to the end of a line.

4-2

Personal BASIC Tutorial 4.2 Editing Subcommands
•

Now that we know how to enter the Edit Mode and move the
' cursor, we can try the various edit subcommands. Return to the Ok

prompt with <cr>. .-- - -,. •

4.2.2 Inserting Characters

. r

Subcommand I ' • • . * . - •

I inserts characters just above where the I is placed in the
edit line. Move the cursor with the Space Bar or BACKSPACE until it
is under the position where you want to insert a character or
characters. Type I and the characters you want to insert. Press
<cr> and the insert is complete. In this example, insert the word
FINAL before the word "AVERAGE."

Ok EDIT 50
50 PRINT "THE AVERAGE IS";AVG

Ed

Type the EDIT command, EDIT 50. Space the cursor to the
position under the "A" in "AVERAGE". Type I and the word you want
to insert, "FINAL ." Include a space after "FINAL ." Think of the I
as reaching up into the line being edited and pushing everything to
the right. Now your edit line looks like this:

50 PRINT "THE AVERAGE is";AVG
Ed IFINAL

Press <cr> and line 50 changes to

50 PRINT "THE FINAL AVERAGE IS";AVG

This procedure might seem complicated now, but with a little
practice you will find that it is easier than retyping the entire
line. .. ̂ 4 - .

4.2.3 Deleting Characters

Subcommand D -

D deletes the character directly above each D in the edit
line. Line 50 is still available to edit, so let's remove the word
FINAL that we just inserted. Move the cursor and type Ds under
"FINAL." Press <cr> and line 50 is restored to its original form.
The delete operation gives this result:

Ok EDIT 50
50 PRINT "THE FINAL AVERAGE IS";AVG

Ed DDDDDD
50 PRINT "THE AVERAGE IS";AVG

Ed

4-3

Personal BASIC Tutorial 4.2 Editing Subcommands

Subcommands I and D can be used together. If we want to
replace the word "AVERAGE" with the word "COUNT" in line 50, this
edit procedure is used:

Ok BDIT 50
50 PRINT "THE AVERAGE IS";AVG

Ed DDDDDDDICOOHT
50 PRINT "THE COUNT IS";AVG

Ed

Now, return line 50 to its original form.

50 PRINT "THE COUNT IS";AVG
Ed DDDDDIAVKRAGE

50 PRINT "THE AVERAGE IS";AVG
Ed

Subcommand H

H deletes all characters to the right of the cursor and
enters Insert mode. You can then add characters to the end of the
line. For example, we want to insert the formula for AVG in line 50,
which makes line 40 unnecessary. Follow these operations:

Ok EDIT 50
50 PRINT "THE AVERAGE IS";AVG

Ed H
Ed 50 PRINT "THE AVERAGE IS";

The H Subcommand removed AVG and moved the cursor to the position
after the semicolon. Next, add the desired formula:

Ed 50 PRINT "THE AVERAGE IS";(A+B+C)/3
50 PRINT "THE AVERAGE IS";(A+B+C)/3

Ed Q^ Finish with a Q. This cancels the
Ok changes made in this editing cycle.

See Subcommand Q, described in Section 4.2.6, "Ending and Restarting
Edit Mode."

4-4

Personal BASIC Tutorial 4.2 Editing Subcommands

4.2.4 Searching for Characters

Subcommand S

S is used to quickly find a specific place in a line. The S
subcommand positions the cursor in the edit line under the character
being searched for. If the character searched for is not found, the
cursor does not move. The format is Sc, where c is the character
you are searching for. In this example, we want to jump to the B in
line 40. The following steps are necessary:

Ok EDIT 40
40 AVG=(A+B+C)/3

Ed SB
40 AVG=(A+B+C)/3

Ed _
Ok

Enter EDIT mode

Type SB and the cursor advances
to the position under B
Press <cr>

Subcommand K

K works like S, except that all characters that the cursor
passes under are deleted and the remaining characters move to the
left. The cursor stops under the searched for character, which now
becomes the first character in the line. If the character is not
found, the cursor does not move. A KA subcommand given while
editing line 50 gives this result:

Ok EDIT 50
50 PRINT "THE AVERAGE IS";AVG

Ed KA
50 AVERAGE ISn;AVG

Ed Q-^ Cancel the edit with a Q
Ok and <cr> to the Ok prompt

4.2.5 Replacing Characters

Subcommand C

C deletes the character directly above it and replaces the
deleted character with the characters to the right of C. We can
change the "THE" in line 50 with the word "THIS", for example.

Ok EDIT 50
50 PRINT "THE AVERAGE IS";AVG

Ed CIS
50 PRINT "THIS AVERAGE IS";AVG

Ed Q^
Ok

Enter EDIT mode

Type CIS
The edited line
Cancel the edit

4-5

Personal BASIC Tutorial 4.2 Editing Subcommands

4.2.6 Ending and Restarting Bdit Node •• - " -- * . #

<cr>

Press <cr> to save your changes and return to where you
entered, either the Ok or tir prompt. (See Section 11.1 for more
information about the Br prompt.)

Subcommand E

E performs the same function as <cr>.

Subcommand Q

Q returns you to the Ok or Br prompt and any changes made in
the current Edit Mode are not saved.

Subcommand A

A deletes all changes made in the current EDIT and leaves you
in EDIT. A allows you to start over on the line being edited.

Note: if you get a syntax error after typing a Personal BASIC line,
you can enter Edit Mode by typing EDIT . (EDIT, space, and a
period).

End of Section 4

4-6

Section 5
Inputs and Outputs

This section tells how to put data into a program and get
something out. Section 5.1 describes the data input statements,
LET, INPUT, READ, DATA, and RESTORE. Then the most-used output
statement, PRINT, is examined in Section 5.2.1. Clear your working
storage with the NEW command.

5.1 Personal BASIC Input Statements

5.1.1 LET

There are only three ways to enter numbers into a Personal
BASIC program, and you already know one of them. Remember how we
assigned values to variables?

50 KNEE=1600

Here, we set the variable, KNEE, to the value 1600. KNEE
remains 1600 until it is set to another value. For example, we
could say,

60 KNEE=KN£E+100

What do you think KNEE equals now? You are right if your
answer is 1700. This is called the LET statement, but Personal
BASIC does not require the word, LET. These two statements mean the
same thing to Personal BASIC:

90 LEG=ANKLE+KNEE 90 LET LEG=ANKLE+KNEE

5.1.2 INPUT

Another method of getting numbers into a program was shown to
you in the example program, CALAVG, in Section 2.2. Remember the
question marks? They were produced by the INPUT statement. Bring
the CALAVG program into your working storage area with the OLD
command. If it is not available for some reason, please type it
again. Here is CALAVG:

Ok 5 REM Average of 3 Numbers
Ok 10 INPUT A
Ok 20 INPUT B
Ok 30 INPUT C
Ok 40 AVG= (A+B+O/3
Ok 50 PRINT "THE AVERAGE IS";AVG
Ok 60 END

5-1

Personal BASIC Tutorial 5.1 Personal BASIC Input Statements

When we started CALAVG with the RUN command, in Section 2.2,
the INPUT statement caused Personal BASIC to stop and print a
question mark. The program stopped three times and waited until you
had input three numbers for variables A, B, and C. Run CALAVG
again. Use the numbers 48, 67, and 56. Your output looks like
this:

Ok RON
? 48
? 67
? 56

THE AVERAGE IS 57

Save CALAVG now if it is not in your permanent storage. Use
this SAVE command:

SAVE CALAVG .

Use INPUT whenever you want the program user to input numbers
or words or respond to a question.

There are other variations of INPUT. You can ask for more than
one variable in the same statement. The CALAVG program requested
values for variables A, B, and C in lines 10, 20, and 30. This line
does the same thing:

10 INPUT A, B, C

INPUT can also print something when it asks for input. Most
BASIC programs use this method of requesting input. Let's change
your CALAVG program. Enter this statement:

10 INPUT "PLEASE TYPE YOUR NUMBERS";A, B, C

Delete lines 20 and 30 because they are not necessary. To do
this, type each line number followed by a <cr>. The command LIST
gives you a listing of the program in your working storage. Type
LIST now with a <cr>. The listing looks like this:

Ok LIST

List of CALAVG.BAS

5 REM Average of 3 Numbers
10 INPUT "PLEASE TYPE YOUR NUMBERS";A,B,C
40 AVG= (A+B+O/3
50 PRINT "THE AVERAGE IS";AVG
60 END

5-2

Personal BASIC Tutorial 5.1 Personal BASIC Input Statements

. RUN this program. The output is .

PLEASE TYPE YOUR NUMBERS ? 34, 56, 78
THE AVERAGE IS 56

Input any three numbers and separate by commas. Do not save
the revised CALAVG. We will need the original version later.

If you do not want a question mark printed after your printed
text, substitute a comma for the semicolon. The text to be printed
must always be enclosed in quotation marks.

String variables can also be used with INPUT. The next
statement uses string variable IN$ and expects an answer of YES or
NO. • •

55 INPUT "IS THERE MORE INPUT";IN$

The correct answers for line 55 ace YES or NO. If you answer
YES, the program looks for more input. A NO answer ends the program
or it branches to another section. If neither YES or NO is entered,
the program prints an error message and returns to line 55. You
will learn how to do this kind of decision making in Section 6.1.
If you cannot wait to see how this works in a program, see program
DICE in Section 8.2.

5.1.3 READ/DATA

There is one more method of bringing numbers and characters
into your program, the READ and DATA statements. READ and DATA go
together, because you cannot have one without the other.

These statements:

4 5 READ A 4 , . ' * - "
50 DATA 5 \. 3.,

--.', ' I f »• ..
result in variable A being set to the number 5. READ statements can
contain both numeric and string variables. Look at these examples
and try them on your computer.

Program READ1 sets variable A to 428, the value in the DATA
statement.

Ok NEW READ1
Ok 10 READ A
Ok 20 PRINT A
Ok 30 DATA 428
Ok 40 END
Ok RUN
428

5-3

Personal BASIC Tutorial 5.1 Personal BASIC Input Statements

way
Program READ2 shows that a string variable can be used the same

Ok NEW READ2
Ok 10 READ T$
Ok 20 PRINT T$
Ok 30 DATA BUTTERFLY
Ok 40 END
Ok RUN
BUTTERFLY

Program READ3 is an example of using more than one DATA
statement. Each time a READ statement is run, it takes the next
DATA value. READ uses all the DATA statements no matter how many
lines they occupy. 386 could have been included in line 70.

Ok NEW READ3
Ok 10 READ X
Ok 20 PRINT X
Ok 30 READ Y
Ok 40 PRINT Y
Ok 50 READ Z
Ok 60 PRINT Z
Ok 70 DATA 67, 45
Ok 80 DATA 386
Ok 90 END
Ok RUN
67
45
386

Program READ4 uses several variables in one READ statement.
The READ statement in line 10 sets the variables S, Rf and U to the
values in the DATA statement in line 30.

Ok NEW READ4
Ok 10 READ S, R, U
Ok 20 PRINT S+R+U
Ok 30 DATA 45,23,67
Ok 40 END
Ok RUN
135

Here is an example of how READ and DATA are used to obtain data
for a Personal BASIC program. Type program COMPUTE and run it.

C A

Personal BASIC Tutorial 5.1 Personal BASIC Input Statements

Ok NEW COMPUTE *»»?
Ok 30 REM READ/DATA Example
Ok 40 READ X, Y, Z
Ok 60 R=X+(y~3)/Z
Ok 70 PRINT R . *
Ok 75 GOTO 40
Ok 80 DATA 34, 3, 21, 43, 2, 25
Ok 90 END
Ok RUN
35.2857
43.32

5 READ statement ran out of data at line 40

This is how values are assigned in the preceding program

Y Z X Y X

34 3 21 43 i 25

First
Time

Second
Time

The message, "READ statement ran out of data at line 40" means
that the READ statement went to line 80 for more data the third time
around the loop and did not find any. One of the next examples
explains how to end a READ/DATA loop. A new statement, GOTO,
returns the program to line 40.

The READ statement reads three numbers from the DATA statement
and then does the calculation and printing. This is how READ and
DATA work together:

1) READ assigns the first value in DATA (34) to the first variable
in READ (X).

2) The program returns to the READ statement and assigns the next
value in DATA (3) to the second variable in READ (Y).

3) The program returns again to the READ statement and assigns the
last variable in DATA (21) to the last variable in READ (Z).

4) Because there are no more variables to assign values to, the
program continues and does the calculation and printing.

5) The program returns to read the next set of numbers.

5-5

Personal BASIC Tutorial 5.1 Personal BASIC Input Statements

Here are some rules to remember for the READ and DATA
statements.

• One READ statement can access several DATA statements. Data
statements are accessed in the same order they are listed in
the program.

• More than one READ statement can use the same DATA statement,

• If there are more variables in the READ statement then items in
the DATA statements, this error message is printed: "READ
statement ran out of data at line xx."

• If there are more items in the DATA statement than variables in
the READ statement, the extra items are not read and there is
no error condition. If there is a later READ statement, it
starts with the first unread item.

• The DATA statements can appear anywhere in the program.

• There can be any number of DATA statements. READ uses them in
order until there are no more variables.

5.1.4 RESTORE

RESTORE tells the READ statement to access the first DATA
statement in the program. If you use RESTORE with the number of a
DATA statement, the READ statement accesses the first item in that
DATA statement. Try this example:

Ok NEW RESTORE
Ok 100 READ RM, S3, ET
Ok 110 RESTORE
Ok 120 READ X, B, R
Ok 130 DATA 56, 78, 34
Ok 140 PRINT RM;S3;ET;X;B;R
Ok 150 END
Ok RUN
56 78 34 56 78 34

What happened here?

Things start out just like they did in program COMPUTE.
Variables RM, S3, and ET are assigned the values in DATA, 56, 78,
and 34. RESTORE then returns the second READ statement (line 120)
to the first item in DATA. X, B, and R are also assigned the values
56, 78, and 34. All of the numbers print on the same line because of
the semicolons. You will learn more about how PRINT spaces output
in Section 5.2.1. Type the RESTORE program and run it both with and
without the RESTORE statement. Type 110 and press <cr> to remove
the RESTORE statement.

5-6

Personal BASIC Tutorial 5.1 Personal BASIC Input Statements

When you run with the RESTORE statement removed, this output
results: -,% x _ >

Ok RON
READ statement ran out of data at line 120

This means that the READ statement at line 120 was unable to
find any data because the READ statement in line 100 had used up the
data. With program RESTORE, READ in line 120 was able to use the
same data already read by the READ statement in line 100.

5.2 Personal BASIC Output Statements

5.2.1 PRIHT

PRINT is the most-used output statement and has many
variations. This book shows you how to do most of the PRINT
operations. Full details of PRINT and another statement, PRINT
USING, are in the Personal BASIC Language Reference Manual.

Let's start with several PRINT statements and a program
containing PRINT statements and the resulting output. Then we will
examine each PRINT operation in greater detail and show you how to
use PRINT in your programs.

You can use a question mark ? in place of PRINT when writing a
Personal BASIC program. The next example program uses both
conventions. Look at the examples and then type and run program
PRINTEX.

PRINT Displays a blank line

PRINT 230 Prints a number
230

PRINT "RED SNAPPER" • Prints whatever is in quotes
RED SNAPPER

Ok NEW PRINTEX
Ok 20 REM PRINT Format Samples
Ok 30 A=5:B=3:C=8
Ok 40 PRINT A+B
Ok 50 PRINT "THE TOTAL IS"; A+B
Ok 60 PRINT
Ok 65 REM PRINT Spacing
Ok 70 ? A,B,C
Ok 80 ? A;B;C
Ok 90 ? A*B*C;

' Ok 100 ? A+B+C,
Ok 110 ? "PRINT IS EASY1"
Ok 120 END
Ok RON

5-7

Personal BASIC Tutorial 5.2 Personal BASIC Output Statements

The output from program PRINTEX is produced by these lines:

8 Line 40
THE TOTAL IS 8 Line 50

Line 60
5 3 8 Line 7 0
5 3 8 Line 8 0
120 16 PRINT IS EASY! Lines 90, 100, and 110

Here is how the items in program PRINTEX were printed:

1) Line 40 is the total of A+B.

2) Line 50 prints the text enclosed in quotation marks, followed
by the value of A+B. The semicolon (;) made the 8 print next
to the word MIS."

3) Line 60 PRINT by itself produces a blank line.

4) Line 70 prints the values of A, B, and C in columns. A print
line is divided into print zones of 14 spaces each. The commas
tell PRINT to print each item at the beginning of a print zone.
The value of A prints in the first zone, the value of B in the
second zone, and the value of C in the third zone.

5) Line 80 is the same as line 70, except that a semicolon is used
instead of a comma. The semicolon tells PRINT to print the
values with no separation. Then why are there spaces between
the values? Printed numbers are followed by a space. Positive
printed numbers are preceded by a space. Negative numbers are
identified by a preceding minus sign.

In the example, there are two spaces between values 5 and 3 and
3 and 8 for these reasons.

6) Line 90 prints the product of A, B, and C. The semicolon tells
PRINT to put the next PRINT output on the same line, with no
space between.

7) Line 100 prints the sum of A, B, and C on the same line with
the product. The comma after C tells PRINT to put the next
PRINT output on the same line and space it to the next print
zone.

8) Line 110 prints the text, "PRINT IS EASY!" on the same line
with the output produced by lines 90 and 100 because of the
comma after the "C" in line 100.

B-8

Personal BASIC Tutorial 5.2 Personal BASIC Output Statements

5.2.2 TAB

The TAB function works like the tabs in a typewriter, except
the tabs must be set each time you PRINT. Type this example program
and RUN it. Do not forget NEW.

^ - -.n • ?n . •» _-' '; ~ ,JC

Ok NEW TABS
Ok 50 PRIHT TAB (10) "This"
Ok 60 PRINT TAB(15)"is how"
Ok 70 PRINT TAB (20) 'TAB works1*
Ok 80 PRINT TAB (25) "with PRINT."
Ok 90 END
Ok RUN

The output of TABS looks like this:

This
is how

TAB works
with PRINT.

Each PRINT command positions the output to start at the line
position of the TAB function. The "T" in the word "This" started at
line position 10, the "i" in the word "is" started at line position
15, and each following PRINT command advances the output five
spaces.

The value for TAB must be between 1 and 255. If the current
print position is greater than the TAB value, TAB positions the
PRINT output on the next line. Value 1 is the leftmost position on
the line; the rightmost position is the defined line width minus 1.

TAB is used mainly for column headings and to position numbers
on business and scientific reports.

5.2.3 PRINT USING

PRINT USING is a very powerful PRINT command that prints
strings or numbers using a specified format.

When printing strings, PRINT USING can print only the first
character of a string, specific characters, or exactly as input.

When printing numbers, PRINT USING can round the number, add
asterisks, dollar signs, or use various other formats. See your
Personal BASIC Language Reference Manual, Section 4.2, for more
detailed information on PRINT USING.

5-9

Personal BASIC Tutorial 5.3 Exercises

5.3 Exercises

1) Write a Personal BASIC program to print the sum and average of
these numbers: 474, 651, 562, 701, 631, and 568. Use 999 to
tell the program that there is no more data to process. Use
READ/DATA statements to input the numbers. The output should
be in this format:

SUM = XXXX
AVERAGE = XXX.XX

2) Repeat exercise 1, but use INPUT instead of READ/DATA and use
this output format:

THE SUM IS XXXX AND THE AVERAGE IS XXX.XX.

3) Write a Personal BASIC program to print your name and address
in this format:

Robert S. Jones
140 Oak Avenue

Sand City, CA 94562

Use INPUT statements and input separately your name, street
address, city, state, and zip code.

See Appendix C for the suggested solutions.

End of Section 5

5-10

Section 6
Decisions and Looping

Let's stop a minute and see where we are in the BASIC learning
process. The following sections use the information already
learned, so it is important that you understand what we have covered
so far. You should remember these statements and commands:

Statements Commands

END DELETE
GOTO DIR
LET ' ERA
PRINT LIST
READ/DATA ' NAME
REM NEW
RESTORE OLD

RENUM
REPLACE
RUN
SAVE

If you are not sure of any of the statements or commands
listed, review the previous sections or refer to the Personal BASIC
Language Reference Manual. Keep doing the examples. If you wonder,
"What would happen Ff I tried ?", go ahead and try it. The
computer will not blow up and your curiosity will be satisfied.

6.1 Decisions, Decisions ' '

So far, all of the example programs were run in the order of
increasing line numbers. When we used GOTO, the program jumped to
the line number after GOTO. One of the most useful and necessary
features of Personal BASIC is the ability to jump to a line number
only if certain conditions are true.

6.1.1 IF/THEN/ELSE

The IF/THEN/ELSE statement is best introduced with examples.
The next program inputs numbers and prints "Over 100" for numbers
over 100 and "100 or less" for numbers equal to 100 or less. Type
the program and run it with various numbers.

6-1

Personal BASIC Tutorial 6.1 Decisions, Decisions

Ok NEW NUMBER
Ok 10 INPUT "ENTER A NUMBER";N
Ok 20 IP N > 100 THEN GOTO 50
Ok 30 PRINT "100 OR LESS"
Ok 40 GOTO 10
Ok 50 PRINT "OVER 100"
Ok 60 GOTO 10
Ok 70 END

This is what happened in program NUMBER:

1) Line 10 Variable N is set to the number input.

2) Line 20 The IF statement sends the program to line 50 if N is
greater than 100. If N is 100 or less, the program
goes to the next statement, line 30.

3) Line 30 N was 100 or less, so "100 OR LESS" is printed.

4) Line 40 The program returns for another number.

5) Line 50 The program branched here from line 20, because N was
greater than 100.

6) Line 60 The program returns for another number.

7) Line 70 The end of the program. The program never reaches
this line, because the GOTO statement at line 60
always returns the program to line 10.

Return control to Personal BASIC with CTRL-C.

6.1.2 IF/THEN Variations

100 IF R45=16 THEN B3=42

In line 100, a variable is assigned a value after THEN instead
of a GOTO, as in line 20 of program NUMBER.

300 IF A4=3.4 AND ERT=67 AND PU=567 THEN GOTO 350

More than one condition has to be true to branch to line 350.
If any one condition is not true, the program run is continued with
the next line after line 300.

The ELSE statement is even more flexible. Examine this
statement.

245 IF COMM >SALARY THEN PRINT "COMM" ELSE IF SALARY>COMM
THEN PRINT "SAL" ELSE PRINT "EQUAL"

6-2

Personal BASIC Tutorial 6.1 Decisions, Decisions

In this statement, three different things can be printed,
depending on the values of the variables COMM and SALARY.

If this

COMM >

SALARY

SALARY

is true: wv;

SALARY

> COMM

= COMM

The printed output is

-- • .• : COMM

- - SAL

EQUAL

Note: did you notice that line 245 extends more than one physical
line? Remember that logical lines of one or nuDjre statements are
terminated by <cr>. It is possible to extend^a/logical line more
than one physical line by using the (line feed Icey7̂ > With line feed,
you can continue typing a logical iTne on the next physical line
without using a <cr>. Personal BASIC can have a maximum of 255
characters in each program line.

GRADES uses the concepts we just learned for
The program asks you to input student grades and then

every grade 65 or over and "FAIL" after every
grade under 65. Indicate the end of the grades by inputting an
impossible grade, 999. This is sometimes called the end-of-file.
Examine program GRADES carefully before you continue.

Program
IF/THEN/ELSE.
prints "PASS" after

Ok NEW GRADES
Ok 5 REM PASS or FAIL
Ok 10 INPUT GRADE
Ok 20 IF GRADE=999 THEN END
Ok 30 IF GRADE>100 or GRADE<1 THEN GOTO 60
Ok 40 IF GRADE <65 THEN PRINT GRADE; "FAIL" ELSE PRINT GRADE;

•PASS"
Ok 50 GOTO 10
Ok 60 PRINT "GRADE SHOULD BE FROM 1 THROUGH 100"
Ok 10 GOTO 10
Ok 80 END ? , «. ,,;

Enter program GRADES and run it using various number grades.
Here is a sample run of GRADES:

Ok RUN
? 45 '•>

45 FAIL ' - -
? 65
65 PASS
? 120

GRADE SHOULD BE FROM
? 95
95 PASS
? 999
Ok

1 THROUGH 100

6-3

Personal BASIC Tutorial 6.1 Decisions, Decisions

Two new concepts are introduced here: a test for program
termination and error messages.

Every program has to end some time. How does the program know
when to end? The program designer must provide a way for the
program to recognize the end of the input. For example, a payroll
file could have as the last name, Mr. XX.XX, a very improbable name.
The program checks each name and when it finds Mr. XX.XX, it knows
that there is no more input. A social security number of 999-99-
9999 could also be used.

For program GRADE, a specific number outside the legal grade
range tells the program the input has terminated. Notice that the
test for the end of input is made in line 20, before the test for a
legal grade.

The program also checks to make sure that each grade input is
within the limit of 1 through 100 (see line 30). If the grade is
not within the range, an error message is printed. Error messages
are very important in programs. The programmer must anticipate
errors by the program user and provide error messages to clearly
explain the problem and tell the user how to proceed. Good error
handling is a necessary part of the programming task.

Note: IF/THEN/ELSE is one statement. ELSE cannot be separated from
the rest of the IF statement by a colon. ELSE cannot be on another
program line. This example is invalid:

50 IF COWS=MILK THEN GRAPES=WINE
60 ELSE ET=3.1416

ELSE ET=3.1416 should be in line 50 after WINE.

6.2 Looping Around - WHILE/WEND, FOR/NEXT

In the preceding sections, some of the programs performed loops
under the control of GOTO and IF/THEN statements. GOTO can send a
program into a loop with no way of getting out. IF/THEN can end
loops by checking for a particular value or condition. Personal
BASIC makes life easier for programmers by providing many ways to
handle looping.

6.2.1 WHILE/WEND

The WHILE/WEND statements run a series of statements in a loop
as long as the stated condition of WHILE is true (not zero). Here
is an example:

6-4

Personal BASIC Tutorial 6.2 Looping Around

Ok NEW -
-< •- Ok 40 C=4

Ok 50 WHILE C
Ok 60 PRINT "I'm trapped in a loop"
Ok 70 C=C-1
Ok 80 WEND

continuation of program

How many times will the text be printed? The WHILE/WEND logic
is to execute the loop from WHILE to WEND until C=0. Here is how it
runs through the loop:

1) C starts as 4 and is reduced by 1 each time the loop runs.

2) WEND sends Personal BASIC to WHILE until the WHILE value is
zero.

3) The statement C=C-1 at line 70 reduces C by one each time the
WHILE/WEND loop is run.

4) When the WHILE value is zero, the program run continues with
the line after WEND.

5) The program prints the text, "I'm trapped in a loop" four
-L times.

An expression can be used after WHILE, such as VM>PQ7. Run
this example:

. s* <> ' I

Ok NEW
Ok 200 VM=10
Ok 210 PQ7=5
Ok 220 WHILE VM>PQ7
Ok 230 PRINT "LOOP COONTER"
Ok 240 VM=VM-1
Ok 250 WEND . . -

continuation of program

The loop runs five times, until VM is reduced to five, the
value of PQ7 . The program then continues with the statement after
WEND.

WHILE/WEND is useful for controlling the number of times a
program goes through a loop. If a program decision is made not to
enter the loop, set the WHILE value to zero before the program
reaches the WHILE statement.

6-5

Personal BASIC Tutorial 6.2 Looping Around

WHILE/WEND loops can be nested (enclosed within each other).
Each WEND matches the most recent WHILE. Each WHILE statement
requires a WEND statement.

6.2.2 FOR/NEXT

The FOR/NEXT statement uses a loop to set a variable to a
series of values and terminates the loop when all the values are
used. This is the format of a FOR/NEXT statement:

30 FOR X = 1 to 10

where X is the variable name; 1 is the lower limit (value of X when
loop starts); and 10 indicates the upper limit (value of X when the
loop ends). The statement, or statements, to be run using the
values of X are inserted after the FOR command and before the NEXT
command.

40 PRINT X,X~2,X~3

50 NEXT X

The NEXT statement adds 1 to the value of X and branches to line 50
until X=10

Here is the complete program. Write the output you think
SQRCUBE will give on a piece of paper and then type SQRCUBE and run
it. Were you right?

Ok NEW SQRCUBE
Ok 10 PRINT "NUMBER^, "SQUARE","CUBE"
Ok 20 PRINT
Ok 30 FOR X=l to 10
Ok 40 PRINT X,X~2,X~3
Ok 50 NEXT X
Ok 60 END

Program SQRCUBE computes the squares and cubes of the numbers
from 1 to 10 and prints the results. This is the output:

Ok RUN
NUMBER SQUARE CUBE

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

6-6

Personal BASIC Tutorial 6.2 Looping Around

The FOR statement in program SQRCUBE increases the value of X
by 1 until the values from 1 through 10 are used. The values for
the variable can be increased or decreased for values other than 1.
In program SQRCUBE, we can easily change it to print the squares and
cubes of all numbers from 0 through 100 ending in 5 by changing line
30 to

30 FOR X=5 TO 95 STEP 10

Here is the output with this change:

Ok 30 FOR X=5 TO 95 STEP 10
Ok RUN
NUMBER SQUARE CUBE

5
15
25
35
45
55
65
75
85
95

25
225
625
1225
2025
3025
4225
5625
7225
9025

125
3375
15625
42875
91125
166375
274625
421875
614125
875375

X starts at 5 and is increased by 10 for each loop until X equals
95.

The value of the FOR variable can also be decreased. In the
same program, if we want to print the same squares and cubes but
start with the largest, we can use this statement:

30 FOR X=95 TO 5 STEP -10

6-7

Personal BASIC Tutorial 6.2 Looping Around

Here is the output with this change:

Ok 30 FOR X=95 TO 5 STEP -10
Ok RON
NUMBER SQUARE CUBE

95
85
75
65
55
45
35
25
15
5

9025
7225
5625
4225
3025
2025
1225
625
225
25

875375
614125
421875
274625
166375
91125
42875
15625
3375
125

X starts with 95 and is decremented by 10 until X-5.

The value of the FOR variable can be set outside of the
FOR/NEXT loop. This is necessary if the number of times through the
loop has to be determined by another part of the program.

Many programs use nested FOR/NEXT loops. Two or more FOR/NEXT
loops must not have crossing paths.

->-

->•

Correct

FOR X

FOR Y

NEXT Y

NEXT X

FOR X

FOR Y

NEXT Y

Incorrect

Figure 6-1. Nested FOR/NEXT Loops

The inner loop (Y) must be completed each time before the outside
(X) is started again.

6-8

Personal BASIC Tutorial 6.2 Looping Around

Program POWERS calculates and prints the value of X to the
second, third, fourth, and fifth power for X = 1 to 10.

Ok NEW POWERS
Ok 10 FOR X=l to 10
Ok 20 FOR Y=2 to 5
Ok 30 PRINT X, X~Y
Ok 40 NEXT Y
Ok 50 NEXT X
Ok END
Ok RUN
1 1
1 1
1 1
1 1
2 4
2 8
2 16
2 32
3 9
3 27
3 81
3 > 243
4 16
4 64
4 256
4 1024

•̂

Y Loop

.̂

X Loop

The program continues for the values of X from 1 through 10.

1) Line 10 sets up the X FOR/NEXT loop.
2) Line 20 sets up the Y FOR/NEXT loop.
3) Line 30 calculates various powers of X.
4) Lines 40 and 50 repeat the loops.

Program INTRATE computes interest and shows the practical use
of some of the statements we have learned. Type the program, save
it as program INTRATE, and run it. The program and a sample run are
listed below. Try to analyze how the program works before you read
the explanation.

6-9

Personal BASIC Tutorial 6.2 Looping Around

Ok NEW INTRATE
Ok 10 REM Monthly Interest Compounding Program
Ok 20 INPUT 'PRINCIPAL';P .
Ok 30 INPUT "YEARLY INTEREST RATE (IN %)";R
Ok 40 INPUT "HOW MANY MONTHS";M
Ok 50 PRINT
Ok 60 ? "MONTH ̂"PRINCIPAL"," INTEREST" f"P -I- I"
Ok 65 ?
Ok 70 FOR K=l to M . V
Ok 80 I=(P*(R/100))/12
Ok 90 ? K,P,I,P+I ., *
Ok 100 P=P+I
Ok 110 NEXT K ^
Ok 120 END
Ok RUN
PRINCIPAL? 5000
YEARLY INTEREST RATE (IN %)? 12
HOW MANY MONTHS? 6

MONTH PRINCIPAL INTEREST P + I

1 5000 50 5050
2 5050 50.5 5100.5
3 5100.5 51.005 5151.51
4 5151.51 51.515 5223.03
5 5203.03 52.0302 5255.06
6 5255.06 52.5505 5307.61

There are programming methods to round numbers and print only
two digits following the decimal point. These techniques are beyond
the scope of this tutorial. Here is how the program does the
interest report:

1) Lines 20, 30, and 40 set the variable values by user input.
2) Line 60 prints the heading.
3) Line 70 sets up the FOR/NEXT loop to the number of months (M) .
4) Line 80 is the interest formula.
5) Line 90 prints the values for each month.
6) Line 100 adds the last interest calculated to the principal.
7) Line 110 returns the program to line 70 until K=M.

Make sure you saved INTRATE and then use OLD to bring our old
friend, program CALAVG, into working storage. List it. CALAVG
prints the average of any three numbers. What if we want to find
the average of 100 numbers? If we use the method in CALAVG, the
program would be very long. Can you write a program to input 100
numbers and print the average using a FOR/NEXT loop? Try this
without looking at the solution.

6-10

Personal BASIC Tutorial 6.2 Looping Around

Ok NEW
Ok 10 FOR C=l to 100
Ok 20 INPUT N
Ok 30 SUM=SUM+N
Ok 40 NEXT C
Ok 50 PRINT "THE AVERAGE IS";SUM/100
Ok 60 END

Here is an explanation of the preceding example:

1) Line 10 sets up the FOR/NEXT loop to input one hundred numbers.
2) Line 20 inputs the numbers.
3) Line 30 keeps a running total of the numbers input.
4) Line 40 restarts the FOR/NEXT loop until C=100.
5) Line 50 computes and prints the average.

We will be using the decision and looping statements in some of
the coming example programs. If you are uncertain about the things
you learned in this section, review the explanations and examples

6.3 Exercises

1) Use a FOR/NEXT loop to print the sum of all the even numbers
from 1 through 1000.

2) Use nested FOR/NEXT loops to print all combinations of the
numbers 1, 2 and 3. The start of your output will be

111
112
113
121
122
123
131

3) Write a Personal BASIC program that inputs a series of numbers
(any numbers) . Signal the end of data with a 999. Compute and
print the largest number, the smallest number, and the number
of numbers input. Use this output format:

THE SMALLEST NUMBER IS XX
THE LARGEST NUMBER IS XXX
XX NUMBERS WERE INPUT

Hint: Use the first number input as the largest and smallest
number so far.

End of Section 6

6-11

Section 7
Working with Words and Letters

7.1 What are Strings?

As we learned in Section 3, a string is a series of characters.
This sentence is a string. The number 100 is a string three
characters long. The words One Hundred are also a string, eleven
characters long.

The variable name for a string follows the same naming rules as
other variables, except that the name of a string variable is
followed by a dollar sign, $. These are examples of string variable
names:

X$ YOUNGER$ T23$ NAME$

We can set string variable NAME$ equal to the characters "Mr.
Harry Frankenstein" with this statement:

NAME? = "Mr. Harry Frankenstein"

The characters in a string must be enclosed in quotation marks. The
quotation marks are not a part of the string.

String variables can be printed just like other variables. The
statement, PRINT NAME$, gives this output:

Mr. Harry Frankenstein

String variables are time savers if you are printing long words
or names. Several Personal BASIC statements control the
manipulation of strings.

..-,- •. - ..
7.2 String Statements

7.2.1 LEN

LEN tells you how many characters are contained in a string.
The count includes spaces. You must put parentheses around the
string. This statement:

PRINT LEN ("Mr. Harry Frankenstein")

or this statement:

PRINT LEN (NAMES)

prints the number of characters and spaces in the string, 22.

7-1

Personal BASIC Tutorial 7.2 String Statements

There are ways to print only part of a string variable. The
statements used are LEFT$, RIGHT$, and MID$.

7.2.2 LEFT$, RIGHT$, MID$

We can print the first nine characters of NAME$ by using LEFT$.
The statement to do this is

PRINT LEFT$(NAME$,9)

and the print output is

Mr. Harry

RIGHT$ works just like LEFT$, except the characters printed are
counted from the right side. This statement

PRINT RIGHTS(NAME$,5)

produces this output:

stein

MID$ prints characters starting anywhere in the string, instead
of at the left or right side. This statement

PRINT MID$(NAME$,11)

prints this output:

Frankenstein

The F in Frankenstein is the llth character in the string.
MID$ printed the string, starting at character 11. MID$ can also
print a specified number of characters starting at any location.
This statement

PRINT MID$(NAME$,13,3)

gives you this output:

ank

The first number after NAME$ is the position in the string
where printing starts. The second number is the number of
characters to be printed.

Here is a program that uses some of the new statements we just
learned. Write what you think the output will be and then type the
program and RUN it to see if you were right.

7-2

Personal BASIC Tutorial 7.2 String Statements

Ok NEW NAMES
Ok 50 NAMES $=" BOBMAEANNSUELOU"
Ok 60 FOR C=l TO LEN(NAMBS$) STEP 3
Ok 70 PRINT MID$ (NAMES$,C,3)
Ok 80 NEXT C
Ok 90 END

The program works this way:

1) Line 50 sets string variable NAMES $.

2) Line 60 starts a FOR/NEXT loop for C, beginning with C=l and
incrementing C by 3.

3) Line 70 prints three characters from the string, starting at C.

4) Line 80 continues the FOR/NEXT loop until C=15, the value of
LEN(NAMES$) .

This program might look a little different to you from the
previous examples, but you have learned all of the statements and
variations in the program. You should have obtained this output:

BOB
MAE
ANN
SUE
LOU ' v '

7.2.3 VAL

You can use numbers as strings, but they cannot be used for
arithmetic computations. Study these examples.

Ok NEW CON
Ok 30 N$="45"
Ok 40 RT§="672"
Ok 50 PRINT N$+RT$
Ok 60 END
Ok RON
45672

In the preceding example, program CON places the two strings
together end-to-end. This is a useful feature called concatenation,
but the numbers in the string are not added mathematically. Notice
what happens in the following example:

7-3

Personal BASIC Tutorial 7.2 String Statements

Ok NEW
Ok 100 CASH$-"50.50-
Ok 110 PRINT CASH$ +70.55

Types of values do not match

Line 110 produces an error message because the number 70.55 is not a
string.

The VAL statement changes the numbers in strings to values that
can be used mathematically. VAL gives you the numeric value of a
string. The first nonblank character of the string must be +, -, &,
. , or a digit. The string can have leading blank characters. Any
other first nonblank character produces a VAL result of zero.

Look at the last example. If we change it by adding VAL, the
result is

100 CASH$=- 50.50"
110 PRINT VAL(CASH$)+70.55

The correct total, 121.05, is printed. The string variable
name must be in parentheses in the VAL statement. You can set a
variable using the value of a string variable, as in the following
example :

CAR = VAL(AMOUNT$) + CQ7 + 49.67

Another statement, STR$, does the reverse of VAL.

7.2.4 STR$

STR$ takes a number and converts it into a string, the opposite
of VAL. In this example, the string variable AMOUNT$ is set to
45.38, the value of variable A.

Ok NEW
Ok 60 A = 45.38
Ok 70 AMOUNT$ = STR$(A)
Ok 80 PRINT AMCKJNT$
Ok RUN

45.38

STR$ could be used to determine the number of digits in a number
Here is the method:

7-4

Personal BASIC Tutorial 7.2 String Statements

Ok NEW
Ok 100 INPUT NUMBER
Ok 110 N$ = STR$(NUMBER)
Ok 120 PRINT LKN(N$)-1
Ok RUN
? 4867 i O N *
4

The variable "NUMBER" is input. STR$ converts the numbers in
variable "NUMBER" to string variable N$. LEN prints the total
number of digits in N$, orginally input as "NUMBER." The 1 was
subtracted from LEN(N$) because a space is included for the sign.

7.3 Comparing and Joining Strings

Strings can be compared like numbers and joined together end to
end, to form a longer string.

7.3.1 Comparing Strings

String variables are compared to each other using the same
operations as numbers:

Table 7-1. Operators for String Comparisons

Symbol Meaning

equals
does not equal
is less than
is greater than
is less than or equal to
is greater than or equal to

Strings are compared by comparing the numerical ASCII codes of
the characters in the string. The ASCII code is the numbers used by
most computers to represent characters. The ASCII codes are listed
in the Personal BASIC Language Reference Manual, Appendix B.

If one string has fewer characters than the other, it is the
smaller. Blanks are considered characters to be compared. Here are
some examples of strings when their values are compared:

7-5

Personal BASIC Tutorial 7.3 Comparing and Joining Strings

"RED LIPS" = "RED LIPS"
"SWEET " > "SWEET" ' . . - > > ;
"rjm" > "RJM" :
"ANN" < "ANNE"
"AA" < "AB"
DATE$ < "3/3/83" (if DATE$ = "2/2/83") -}-.
"XYZ" <> "xyz"

Here is a program named COLORS that uses string comparisons to
convert English color names to French. Type in the program and run
it with names of colors. A sample run is included. Save the
program. Program COLORS is also a good example of the use of
READ/DATA and RESTORE.

Ok NEW COLORS
Ok 40 REM ENGLISH TO FRENCH COLOR CONVERSION
Ok 50 INPUT "ENTER A COLOR";C$
Ok 60 READ E$,F$
Ok 70 IF E$ = "END" THEN PRINT "TRY ANOTHER COLOR":GOTO 100
Ok 80 IF E$<>C$ THEN GOTO 60
Ok 90 PRINT C$; " IN FRENCH IS ";F$
Ok 95 PRINT
Ok 100 RESTORE
Ok 110 GOTO 50
Ok 120 DATA BLACK,NOIR,BROWN,BRUN,GREEN,VERT
Ok 125 DATA BLUE,BLEU,GREEN,VERT,RED,ROUGE
Ok 130 DATA ORANGE,ORANGE,YELLOW,JAUNE,WHITE,BLANC,END,END
Ok 140 END
Ok RUN
ENTER A COLOR? RED
RED IN FRENCH IS ROUGE

ENTER A COLOR? PINK
TRY ANOTHER COLOR

Do you understand how the program works? Here is an
explanation:

1) Line 50 An English color name is input.

2) Line 60 The English and French colors are read from DATA,
beginning with line 120.

3) Line 70 If the program reaches END, there is no English color
by that name in either DATA line.

4) Line 80 If the specified color is not found, the program
branches back to read another set of colors. <>
means "not equal to."

5) Line 90 A match was found and the answer printed.

7-6

Personal BASIC Tutorial v 7.3 Comparing and Joining Strings

6) Line 100 RESTORE makes the READ statement start with the first
DATA value (BLACK) if the color was not in DATA or
if a match was found. .. <,•-*

7) Line 110 Returns the program to the READ statement.

8) Lines 120, 125 and 130 DATA statements.

This programming method could be used to design an educational
game to learn the state capitals. . • .- -

7.3.2 Joining Strings '"*' '

Joining strings together is called concatenation. With
concatenation, you can make strings up to 255 characters long.
Return to the Ok prompt with a CTRL-C and type and run program JOIN.

Ok NEW JOIN
Ok 10 B$ = "OVER"
Ok 20 C$ = "EASY"
Ok 30 PRINT B$ -I- " AND OUT" :
Ok 40 PRINT B$ -I- C$
Ok 50 PRINT C$ + B$
Ok 60 END
Ok RUN
OVER AND OUT ̂ "AND OUT" added to the end of B$ (OVER)
OVEREASY ̂ C$ (EASY) added to the end of B$ (OVER)
EASYOVER ̂ B$ (OVER) added to the end of C$ (EASY)

_•.. • „, • » < •
Here is an interesting program called REVERSE that reverses the

/̂ order of characters in a string. It illustrates the use of
concatenation, MID$, and uses a FOR/NEXT loop. Study the program,
type and run it with different inputs.

7-7

Personal BASIC Tutorial 7.3 Comparing and Joining Strings

Ok HEW REVERSE \e. - -
Ok 10 REM Reverses order of input string
Ok 20 INPUT "ENTER STRING TO BE REVERSED -,STRNG$
Ok 30 LENGTH=LEN(STRNG$)
Ok 40 FOR X=LENGTH TO 1 STEP -1
Ok 50 CHARACTER$=MID$(STRNG$,X,1)
Ok 60 NEWSTRING$=NEWSTRING$+CHARACTER$
Ok 70 PRINT NEWSTRING$, CHARACTER?
Ok 80 NEXT X
Ok 85 PRINT
Ok 90 PRINT "REVERSED STRING IS ";NEWSTRING$
Ok 100 CLEAR
Ok 110 INPUT BMOREB;M$
Ok 120 IP M$="YES" THEN GOTO 20
Ok 130 END
Ok RUN
ENTER STRING TO BE REVERSED ARTICHOKE
E E
EK K
EKO O
EKOH H
EKOHC C .
EKOHCI I , - ,
EKOHCIT T
EKOHCITR R »
EKOHCITRA A

REVERSED STRING IS EKOHCITRA
MORE? NO " '
Ok

Line 70 was included to give you a picture of how the reversed
string, NEWSTRINGS (left column) is developed as each character
(right column) is added to it.

This is what happens in program REVERSE:

1) Line 20 The string to be reversed is input.

2) Line 30 The length of the input string is determined.

3) Line 40 The FOR/NEXT loop is initialized.

4) Line 50 A character of the input string is obtained, starting
with the rightmost.

5) Line 60 The character obtained in line 50 is concatenated to
the reversed string.

6) Line 70 PRINT statement to illustrate method.

7) Line 80 End of FOR/NEXT loop.

7-8

Personal BASIC Tutorial 7.3 Comparing and Joining Strings

8) Line 90 PRINT statement for printing reversed string.

9) Line 100 This is a new statement for you. CLEAR sets all
variables to zero or null. The program is
unchanged. Without CLEAR, string variable
NEWSTRING$ would contain the string entered from the
previous run. Run REVERSE without CLEAR a few times
and you will understand why CLEAR is necessary.

10) Lines 110 and 120 User asked if rerun is desired.

Other statements dealing with strings are described in the
Personal BASIC Language Reference Manual. They are MKI$, OCT$,
SPACE$, and STRING$.

7.4 Exercises

1) Write a Personal BASIC program that counts and prints the
number of B's (or any other character) in any string. Hint:
Review program NAMES.

2) Input the string "ONE TWO THREE" and reverse the words to
produce this output: THREE TWO ONE.

End of Section 7

7-9

c

Section 8
Personal BASIC Functions

We stopped at the beginning of Section 6 to review the
statements and commands that you should be familiar with. Well,
it's time to do this again. The statements added in Sections 6 and
7 are marked with an asterisk (*).

Statements Commands

* CLEAR DELETE
END DIR

* FOR/NEXT ERA
GOTO LIST

J A * IF/THEN/ELSE , , NAME
j'«i i- * LEFT$ NEW

* LEN OLD
LET RENUM

* MID$ REPLACE
PRINT RUN
READ/DATA SAVE
REM
RESTORE

•^A -.<• , -JL * RIGHT$
'• * ̂ * STR$

* VAL
* WHILE/WEND

Review these statements and commands if necessary. Continue
entering and running the examples. Keep the Personal BASIC Language
Reference Manual handy.

8.1 Definition of Functions

Many computing tasks are required on a regular basis. Personal
BASIC includes many functions to automatically do these tasks.
Functions are like formulas that manipulate numbers and strings.

Personal BASIC provides a full set of preprogrammed built-in
functions. With these built-in functions and user-defined
functions, you can perform complicated operations with minimum
difficulty.

Only the most-used functions are described in this tutorial.
All of the functions are described in detail in the Personal BASIC
Language Reference Manual.

8-1

Personal BASIC Tutorial 8.2 Built-in Functions

8.2 Personal BASIC Built-in Functions ,

8.2.1 SQR(X)

The format for all mathematical functions is FUNCTION (X). X is
called the argument of the function. Think of the argument as what
the function works on. Function SQR gives the square root of the
argument. SQR output looks like this:

Ok PRINT SQR(36)
6

Ok PRINT SQR(10)
3.16228

The argument of SQR can be as complicated as you like, but it
cannot be a negative number. For example, this argument is
permitted:

PRINT SQR(C+(tT3)+66)

8.2.2 INT(X)

The result of INT is the integer part of X. Integer is another
way of saying whole number. This is how INT takes the integer of
numbers:

Ok PRINT INT(45.678)
45

Ok PRINT INT(0.418)
o

Ok PRINT INT(6)
6

Ok PRINT INT(-.647)
-1
Ok PRINT INT(-8)
-8

The integer part of a number is the first integer less than the
number. INT does not round the number.

8.2.3 SGN(X)

SGN tells you the sign of the argument. If the argument is
positive, the SGN output is 1; if the argument is negative, the
output is -1. If the argument is zero, the SGN output is 0. Look
at these examples:

8-2

Personal BASIC Tutorial 8.2 Built-in Functions

Ok PRINT SGN(56.78)

Ok PRINT SGN(-45.6) ,0/
-1
Ok PRINT SGN(O)
0

'-•'-."'* ^c~ ? v • , , : - >
8.2.4 ABS(X)

ABS removes the sign from the argument and leaves what is left
Here is ABS at work:

Ok PRINT ABS(78.23)
78.23

Ok PRINT ABS(-537.8)
537.8

Ok PRINT ABS(O)
0

8.2.5 RND(X)

You can have fun with RND, especially if you are a gambler.
RND produces a number generated at random between 0 and just under
1. Random numbers are used in simulations and in generating
gambling situations, like rolling dice. If X is positive or not
included, RND generates the same sequence of random numbers. If X
is zero, the last number generated is repeated.

The numbers obtained from RND look like this:

' .7349128 .1429684 .5980341 .9854673

If you want to see a lot of random numbers, enter the next
program and run it. CTRL-C stops the output, <cr> restarts it.
Return to the Ok prompt with CTRL-C given while the output is
stopped.

Ok NEW
Ok 20 PRINT RND(8);
Ok 30 GOTO 20
Ok 40 END

If you want random numbers other than the decimal numbers
generated, something must be done to change the output from RND. If
you need a random number from 1 through 10, multiply the RND output
by 10, take the INT and then add 1. Any other required number may
be done in a similiar way. This program produces a random number
from 1 through ten. Remember, the argument of RND can be any
positive number.

8-3

Personal BASIC Tutorial 8.2 Built-in Functions

Ok NEW
Ok 20 N=RND(4)
Ok 30 N=INT (N*10) -I- 1
Ok 40 PRINT N
Ok 50 END

In the example, assume that RND generates the number, .5129042.

N * 10 is 5.129942
INT (N * 10) is 5
5 + 1 is 6

The addition of 1 is necessary because the random numbers must
be from 1 through 10. Program RAN generates 10 random numbers
ranging from 1 through 100. The RANDOMIZE statement produces a
diffprent set of numbers each time program RAN is run. RANDOMIZE
ask*- for a number seed which it uses to generate the random numbers.
Enter any number in the range specified. Program RAN without the
RANDOMIZE statement will produce the same set of numbers for each
run.

Here is the program with sample runs. Run it a few times and
notice the variations in the numbers generated.

Ok NEW RAN
Ok 290 RANDOMIZE
Ok 300 FOR I » 1 to 10
Ok 310 PRINT INT (RND* 100) -I- 1;
Ok 320 NEXT I
Ok 330 END
Ok RUN
Random number seed (-32768 to +32767)? 6
84 80 40 59 14 40 28 76 53 70

Ok

Try program DICE. DICE simulates throwing a pair of dice and
prints the result of each throw.

8-4

Personal BASIC Tutorial 8.2 Built-in Functions

Ok NEW DICE R̂ .
Ok 10 B*=INT(6*RND(1)) + 1
Ok 20 PRINT "Black die rolls ";B
Ok 30 W=INT(6*RND(1)) + 1
Ok 40 PRINT "White die rolls ";W
Ok 50 PRINT
Ok 60 INPUT "Roll again ";Q$
Ok 70 IF Q$ = "YES" THEN GOTO 10
Ok 80 IF Q$ = "NO" THEN END
Ok 90 PRINT "Please answer YES or NO"
Ok 100 GOTO 60
Ok 110 END
Ok RON
Black die rolls
White die rolls

Roll again ?

6
1

Program output should
look like this. i

GOOD LUCK 1

If you are not sure how the formula in lines 10 and 30 works,
try it out by hand with a few numbers. Included in the program is
the option of continuing more dice throws or stopping. Without this
option, you must type RUN to simulate another throw. Here is the
program logic:

1) Lines 10 and 30 simulate the dice rolling
2) Lines 20 and 40 print the results
3) Lines 60 through 100 allow for another throw

When you finish throwing dice, we will continue our discussion
of Personal BASIC built-in functions.

Personal BASIC contains many mathematical functions not
included in our tutorial. They are listed here for your
information. See the Personal BASIC Language Reference Manual for
details.

Table 8-1. Personal BASIC Math Functions

Function

ATN(X)
CDBL(X)
CINT(X)
COS(X)
CSNG(X)
EXP(X)
FIX(X)
SIN(X)
TAN(X)

Description

Gives
- Conver

Conver
Gives
Conver
Gives
Gives
Gives
Gives

the
ts
ts
the
ts

X
X

X
e to
the
the
the

arctangent of X in radians
to a double precision number
to an integer by rounding

cosine of X in radians
to a single precision number
the power of X

truncated integer part of X
sine of X in radians
tangent of X in radians

8-5

Personal BASIC Tutorial 8.3 User-defined Functions

8.3 User-defined Functions

Personal BASIC lets you to create do-it-yourself functions with
DEF statements. You define the function and then the function is
used just like the functions we learned, such as SQR or INT. A DEF
statement has the following format:

' 4

DEF (FNname)(argument) = definition

• name is a valid variable name.

• argument is a variable name in the definition that is replaced
by a value when the function is used.

• definition is an expression that describes the function.

Program TEMPCON creates a DEF function to convert Celsius
temperature to Fahrenheit.

Ok NEW TEMPCON
Ok 5 RKM Celsius to Fahrenheit conversion
Ok 1U DEF FNCTOF(C)=C*1.8+32
Ok 20 INPUT "CELSIUS ";C
Ok 30 PRINT C;•DEGREES CELSIUS IS' FNCTOF(C) "DEGREES FAHRENHEIT."
Ok 40 END
Ok RON
CELSIUS ? 45
45 DEGREES CELSIUS IS 113 DEGREES FAHRENHEIT

Here is an explanation of program TEMPCON:

1) Line 10 shows the DEF FN statement that defines a function to
convert Celsius to Fahrenheit. CTOF is the variable name, C is
the argument, and C*1.8+32 is the definition.

2) Line 20 is a normal INPUT statement asking for C.

3) Line 30 is the PRINT statement that calls function FNCTOF.

DEF statements can have more than one variable, as seen in
program CARPET. The program computes the total cost of carpeting a
room, including five percent for trimming. Type the program and run
it with various inputs.

R-6

Personal BASIC Tutorial 8.3 User-defined Functions

Ok NEW CARPET
ok 10 INPUT "ENTER LENGTH AND WIDTH IN FEET ";L,W
Ok 20 INPUT -ENTER COST IN DOLLARS PER YARD ";C
Ok 30 DBF FNCOST(L,W,C) = 1.05*(L/3*W/3*C)
Ok 40 PRINT
Ok 50 PRINT "TOTAL COST IS $";FNCOST(L,W,C)
Ok 60 INPUT "DO YOU WANT ANOTHER ESTIMATE ";Q$
Ok 70 IF Q$ = "YES" THEN GOTO 10
Ok 80 END
Ok RUN
ENTER LENGTH AND WIDTH IN FEET ? 25,18.5
ENTER COST IN DOLLARS PER YARD ? 15.95

TOTAL COST IS $ 860.635

In program CARPET, the function was defined in line 30 and the
total cost printed in line 50.

Notice that the input was requested in the most used units,
feet and dollars per square yard. We usually measure in feet and
price a carpet per square yard. Program users should be able to
enter familiar values into programs. Let the program handle any
necessary conversions. In program CARPET, feet were converted into
yards in the function formula in line 30.

In line 70, we assumed that anything other than "YES" meant
that the user did not want to continue.

A DEF FN statement can be placed anywhere in a program. The
function only needs to be defined once.

End of Section 8

8-7

Section 9
Working with Groups of Data — Arrays

Who needs ARRAYS? You need arrays if you want to work with
more than a few numbers or characters at a time. Arrays sometimes
scare beginners, but if you follow the examples and text, you will
find that they are no more difficult than the material already
covered.

In the programming examples in previous sections, only a few
numbers were used to illustrate the various statements and commands.
In the real world, programs usually operate on many numbers related
in some way. Consider this problem:

A teacher wants to compute grade averages for three tests and
print the results for 100 students. READ/DATA statements are
impractical in this example because of their length, and the
difficulty of assigning and keeping records on 100 variables. This
program could do the job, but has several disadvantages:

10 NEW
20 PRINT "NAME","GRADE AVERAGE"
30 PRINT:PRINT
40 FOR S=l to 100
50 INPUT "Enter name and grades";N$,A,B,C
60 PRINT N$, (A+B+O/3
70 PRINT
80 NEXT S
90 END

The program gives us the required output, but what if you want
to change a name, a grade, or add a student? The tedious job of
inputting 100 names and grades has to be repeated. Arrays with
subscripted variables let us handle large groups of data
comparatively easily.

9.1 Subscripted Variables

A group of data is called an array. Each item in an array must
be defined separately. Subscripts are used to do this. This is an
array:

" V^' - ~ I J.^f 5 1 t~

,'f. - '

9-1

Personal BASIC Tutorial 9.1 Subscripted Variables

T (0)
T(l)
T (2)
T(3)
T (4)
T (5)
T (6)

=
=
=
=
=
=
=

4
12
32
20
18

6
26

The name of this array is T. The size of array T is 7, since
it has seven elements (numbers). The numbers 4, 12, 32, 20, 18, 6,
and 26 are the elements in array T. The numbers after the array
name are subscripts. Subscripts normally start with zero. An array
name follows the same naming rules as other variables. Array A and
variable A are not the same and both can be used in one program.

Arrays are described like this when reading them in a program:
the fifth element in array T is called, HT sub five". Array T is
called a one-dimensional array, because only one number (or
subscript) is required to locate any element.

Arrays can have more than one dimension. The following array M
is a two-dimensional array:

ARRAY M (R, C)

M(0,0) = 6 M(0,l) = 21 M(0,2) =
M(l,0) = 13 M(l,l) = 34 M(l,2) =

8
17

Array M has six elements. The first subscript gives the row number
and the second, the column number. M(l,2) is read as "M sub one
two." Array M looks like this in row and column form:

COLUMNS

ROWS

0

1

U 1 £.

6

13

21

34

8

17

Figure 9-1. Two-dimensional Array

Use subscripted variables like other variables in BASIC
statements. The statement PRINTM(1,2) prints the number 17. PRINT
M(l,0) + M(0,2) prints the number 21. Looking at array T, PRINT
T(3) + T(6) prints the sum of 20 and 26, 46.

9-2

Personal BASIC Tutorial 9.1 Subscripted Variables

FOR/NEXT statements are sometimes used to set up and load
arrays. Program ARRAY sets up an eight by five array and then loads
9s into each element.

Ok NEW ARRAY
Ok 10 DIM B(7,4)
Ok 20 FOR R = 0 to 7
Ok 30 FOR C = 0 to 4
Ok 40 B(R,C) = 9
Ok 50 NEXT C
Ok 60 NEXT R
Ok 70 END

If you are unsure how the nested FOR/NEXT loops work, refresh
your memory by reviewing Section 6.2. The row and column values are
reset during each FOR/NEXT loop and a 9 is inserted into each
element. The substitutions in line 40 start like this: B(0,0),
B(0,l), 8(0,2), B(0,3), B(0,4), B(l,0), and so on. B(7,4) is the
last element. <t . ^,

If you want to make sure that array B was loaded with 9s, print
some of the elements. For example, PRINT B(3,3); PRINT B(5,l).

9.2 Array statements

9.2.1 DIM

Personal BASIC must know the size of an array so that enough
memory space can be reserved. The DIM statement is required before
an array can be specified. If an array variable name is used and no
DIM statement exists with that name, the maximum number of
subscripts possible is 11. The subscripts are numbered zero through
10. If the option base is 1 (see the option base description
below), 10 subscripts is the maximum in the range 1 through 10. If
a subscript over the maximum is used without a DIM statement, the
error message, "Subscript refers to element outside the array" is
printed. Here is an example of a DIM (dimension) statement:

100 DIM B(4,19), Y(79), Z(33)

Three arrays are dimensioned in line 100. B is a two-
dimensional array with five rows and twenty columns. Y is a one-
dimensional array with eighty elements, and Z is a one-dimensional
array with 34 elements. DIM statements should be first in your
program so that you will know easily how much space your arrays are
using. It is good practice to use DIM for small arrays, just to
make your bookkeeping easier.

9-3

Personal BASIC Tutorial 9.2 Array Statements

9.2.2 OPTION BASE

The minimum value for a subscript is zero unless changed by the
OPTION BASE statement. This statement changes the minimum value
from zero to 1. When this statement:

OPTION BASE 1
f!

is used, the lowest value for an array subscript is 1. The option
base can be redefined any number of times.

9.2.3 ERASE

ERASE does just what you might guess—it erases the specified
array or arrays from your program. The statement:

560 ERASE RT, G45

erases all traces of arrays RT and G45. An array can be
redimensioned by DIM after being erased. Arrays cannot be
redimensioned unless ERASE is first used. If this is attempted,
error message "You defined an array more than once" is printed.

End of Section 9

9-4

Section 10
Disk Input and Output — File Processing

This section is a brief introduction to disk input/output and
files using Personal BASIC. For a complete explanation of files and
how to use them, refer to the Personal BASIC Language Reference
Manual. . . , . ,

10.1 File Concepts

Computers would not be very useful if they only used their
internal memory (RAM) for storage. The programs and data in RAM are
lost when the computer is switched off. The amount of storage in
RAM is limited compared to the storage available in permanent
storage (disk and tape) . We have been using the SAVE and REPLACE
commands to move programs from temporary storage (RAM) to permanent
storage.

Permanent storage of data and the manipulation of that data is
done by various BASIC commands and statements that pertain to files.
The creation and manipulation of files is the purpose of most data
processing. A file is a series of records relating to the same
subject. The records of all the inventory items make up a file; the
records containing the names and addresses of employees could be a
file.

Files are used to store numeric data and string data into a
permanent place for use at any time. The data in files can be
updated, inspected, deleted, or sorted. Files can be very small —
your telephone list, for example — or very large — such as the
government's list of Social Security recipients.

We have been using BASIC statements like INPUT, LET, and
READ/DATA to enter program data. Using files, you can enter and
store data using one program and then access the same data with a
different program. Programs can read from or write onto files.
Imagine an inventory file. In a business, programs such as these
might use this file: . . -• — «

31 _^

Inventory Control
Accounting
Forecasting ^ , »
Parts Lists
Purchasing
Scheduling

There are two types of files that can be created and used by a
Personal BASIC program, sequential and random access.

10-1

Personal BASIC Tutorial 10.2 Sequential Files

10.2 Sequential Files
i

Sequential files are easier to use than random access files, ̂
but they have fewer features and are slower. Sequential files store
information as a continuous series of data. For example,

BOB SMITH,345-8496/ANN JONES,563-890/JERRY WHITE,540-7436/

Sequential files are stored and searched on the basis of a key
item in each record. The records are read, one at a time, until the
desired record is found. The key of the record is not related to
its location in the file. If we want to search for an employee
record with an employee number key of 4267, the computer has to
search the sequential file from the beginning. The key of each
record is compared to 4267 until the record for employee 4267 is
found or the end-of-file is reached.

The Personal BASIC statements used with sequential files are

OPEN WRITE! INPUT!

PRINT! PRINT!USING LINE INPUT!

CLOSE EOF LOG

These are the steps necessary to create a sequential file and f
access the data in the file:

1) OPEN the file for output.
2) Write data to the file using PRINT!, WRITE!, or PRINT!USING.
3) CLOSE the file and then OPEN it to access the data in the file.
4) Read data into your program with INPUT! or LINE INPUT!.

Program FILES illustrates these four steps. A file named
"DATA" is created and string variables are written to the file. The
file is closed and then reopened to read the string variables into
the program. The values of the string variables are printed.

Ok NEW FILES
Ok 190 A$="APPLE":B$="BEAN":C$="CHERRY"
Ok 200 OPEN "O-,*l/"DATA

il Step 1
Ok 210 WRITE*!,A$,B$,C$ Step 2
Ok 220 CLOSE fl Step 3
Ok 230 OPEN "I",*1,"DATA-

Ok 240 INPUTtlrX$,Y$,Z$ Step 4
Ok 250 PRINT X$,Y$,Z$
Ok 260 END
Ok RUN
APPLE BEAN CHERRY
Ok

10-2

Personal BASIC Tutorial 10.2 Sequential Files

Here is another example. Program PARTS creates an inventory
list from information input at the terminal.

— - - j -

Ok NEW PARTS
lo Ok 10 OPEN "O", II, "PARTS" : (

* Ok 20 INPUT •NAMB-;NAME$
; Ok 30 IF NAME$='HALT" THEN END
I0- Ok 40 INPUT - NUMBER" ;NO$ a, .

Ok 50 INPUT " QUANTITY" ;Q .-, .
Ok 60 WRITE |1,NAME$,NO$,Q$. '
Ok 70 PRINT :GOTO 20

n Ok 80 END ; . , «, . - . \
t ' j Ok RUN

NAME? T CLAMP
NUMBER? 36932N
QUANTITY? 45

NAME? TORSION BOLT
NUMBER? 68154AD

«,,, QUANTITY? 200

NAME? RETRACTOR
NUMBER? 31930AT
QUANTITY? 95

NAME? LOCK NUT
NUMBER? 84613W
QUANTITY? 2000

(t
NAME? HALT
Ok

The END statement closes all open files if no CLOSE statement
is used in the program.

Now we have a sequential file created and closed according to
the first three steps. Step 4 is necessary to use the file in a
program. Program SEARCH reads file PARTS and prints all part
numbers with quantities under 100.

Ok NEW SEARCH
Ok 5 REM Print part numbers when quantity is less than 100
Ok 10 OPEN "I", fl, -PARTS"
Ok 20 IF EOF(l) THEN END
Ok 30 INPUT fl,NA$,NO$,Q

kp Ok 40 IF Q<100 THEN PRINT NO$
Ok 50 GOTO 20
Ok 60 END
Ok RUN
36932N
31930AT

10-3

Personal BASIC Tutorial 10.2 Sequential Files

Statement 20 checks for the end-of-file. An error statement
"You Have Reached End-of-File" is printed without this statement.
An end-of-file mark is added to the end of a sequential file when
the file is closed.

Data can be added to sequential files, but another variation of
the OPEN command is used. If a sequential file is opened for output
in the "O" mode, the contents are destroyed. When you want to add
data to an existing sequential file, you must OPEN the file for
APPEND. The explanation of the OPEN statement in the Personal BASIC
Language Reference Manual explains this in more detafl.

Now that we have seen some examples of sequential files, we can
examine how random files work and how they differ from sequential
files.

10.3 Random Files

Random files should be used if frequent changes to the file are
necessary or if data in the file must be accessed in minimum time.
Some examples of files that have to be random are

• Airline Reservations
• Credit Card Data
• Instant Bank Teller
• On-line Inventory

Random file records each have an assigned number. Each record
can be compared to a small sequential file. Records are found
directly or randomly without reading through the entire file.
Records can be changed easily without the involved procedures
required by sequential files. Random files use less space than
sequential files because they are stored in a different format. The
statements used with random files are

OPEN FIELD LSET/RSET

GET PUT CLOSE

MKI$ MKS$ MKD$

CVI CVS CVD

LOC LOF

These are the steps necessary to create a random file and
access the data in the file. The random buffer is an intermediate
storage area between RAM and the random file.

10-4

Personal BASIC Tutorial 10.3 Random Files

1) OPEN the file for random access (R) mode. The next program,
MAIL, creates a random file named MLIST, and specifies a record
length of 55 bytes (characters).

2) Use the FIELD statement to allocate space in the random buffer
for the variables to be written into the random file.

3) Use LSET to move the data into the random buffer set up by
FIELD. Numeric values must be converted to strings prior to
being placed in the buffer.

4) Use PUT to write the data from the buffer to the disk.

. >Tt '

Program MAIL illustrates these four steps. A mailing list
random file of name, address, and city/state is created from
terminal inputs in lines 330, 340, and 350. The PUT statement in

-̂ line 390 writes a record to the file each time it is run. The two
' digit code input in line 330 becomes the record number.

Ok NEW MAIL ?
Ok 300 OPEN •R"y|l,"MLIST"T55 * Step 1
Ok 310 .PIEr.n |1,20 AS N$, 20 AS A$, 15 AS CS$ Step 2
Ok 320 INPUT 'TWO DIGIT CODE';C Record
Ok 325 IF C=99 THEN END
Ok 330 LINE INPUT "NAME";X$
Ok 340 LINE INPUT "ADDRESS";Y$
Ok 350 LINE INPUT "CITY/STATE";Z$
Ok 360 LSET N$=X$
Ok 370 LSET A$=Y$
Ok 380 LSET CS$=Z$
Ok 390 PUT |1,C —;> /**** -̂c-̂ &y <*"+ ^^r &*qti&e.* Step 4
Ok 400 PRINT frsJurf
Ok 410 GOTO 320
Ok 420 END
Ok RUN
TWO DIGIT CODE? 11
NAME? BUFFORD BLIMP
ADDRESS? 68000 CHIP ROAD
CITY/STATE? BIG HORN, WYOMING

TWO DIGIT CODE? 23
NAME? PRIMROSE PLUM
ADDRESS? 4289 ROLLING DRIVE
CITY/STATE? TWO DOT, MONTANA

TWO DIGIT CODE? 18
NAME? CONSTANCE CORTISONE
ADDRESS? 920 HOSPITAL STREET
CITY/STATE? CANOE, MICHIGAN

TWO DIGIT CODE? 99
Ok

10-5

Personal BASIC Tutorial 10.3 Random Files

These are the steps necessary to access the random file just
created:

1) OPEN the file in the R mode.

2) Use FIELD to allocate space in the random buffer for the
variables to be read from the file.

3) Use the GET statement to move the record you want to read into
the random buffer.

4) The data in the buffer is now available to the program.
Numeric values must be converted back to numbers using CVI,
CVS, or CVD.

The next program, RSEARCH, accesses the random file, MLIST,
created in program MAIL. The two digit code is entered and the
record input with that code is read from the file and printed. This
is the basic idea behind information retrieval systems.

* _̂

Ok NEW RSEARCH
Ok 50 OPEN "R",|1,"MLIST",55 Step 1
Ok 60 FIELD |1, 20 AS N$, 20 AS A$, 15 AS CS$ Step 2
Ok 70 INPUT "TWO DIGIT CODE";C Record No.
Ok 80 IF C=99 THEN END _ n

Ok 90 GET II, C -̂ > 7)al^№ {*<& ^ K^<4n~ Kflts step 3
Ok 95 PRINT
Ok 100 PRINT N$:PRINT A$:PRINT CS$:PRINT
Ok 110 GOTO 70
Ok 120 END
Ok RUN
TWO DIGIT CODE? 23

PRIMROSE PLUM
4289 ROLLING DRIVE
TWO DOT, MONTANA >

 T

*

TWO DIGIT CODE? 99
Ok

You might want to experiment with various inputs using the MAIL
program and then do some searching with RSEARCH. As an optional
activity, you could modify the programs to include the ZIP code.

End of Section 10

10-6

Section 11
Testing and Debugging Your Program

Bugs are not desirable in your home or in your program. Bugs
are program errors. Newly written program usually have a bug or
two, even if written by an experienced programmer. Debugging is the
procedure used to find and correct program errors.

Personal BASIC checks for syntax errors as you enter each line
of your program. This means that syntax errors will not slow you
down when you run your program.

Once the program is debugged and running, you can begin program
testing. Program testing is simple or complex, depending on how
sure you want to be that the program will handle most of the data
input to it.

11.1 Program Debugging

The best way to avoid program bugs is to plan your program in
advance. Do not sit down at your keyboard and start keying in
statements at a furious pace unless you have done some planning.
Flow charts, even a written description of what your program should
do, are better than no planning at all. The program inputs and
outputs are vital and should be specified before programming begins.

Personal BASIC has a complete set of debugging tools to help
you find program errors. Personal BASIC'S Break Mode lets you run
your program in step and various trace modes. From the Break Mode,
you can restart your program run, list your program, run it one line
at a time with the STEP command, trace any line number with the
TRACE command, or obtain a list of line numbers as they run with
TRON.

11.1.1 Break Mode

The Break Mode is a powerful debugging tool, and even beginners
find it easy to use. The best way to learn how the Break Mode works
is to use it.

Type program BUGS for use in the following examples and save
it. Do you see something wrong? You are right if you noticed that
BUGS will never stop when run. An endless loop is not acceptable in
a program, but we use it to help explain the debugging commands.

11-1

Personal BASIC Tutorial 11.1 Program Debugging

Ok NEW DUGS
Ok 20 N = 5
Ok 30 FOR X = 1 to N
Ok 40 PRINT X,X~2,X~3
Ok 50 NEXT X
Ok 55 GOTO 20
Ok 60 END

Run program BUGS. While it is looping, press CRTL-C to enter
the Break Mode. The program stops at some line number and displays
this output:

Ok RUN

— Break
Br

— at line 50

The line number can be any line in your program, depending on
what line was being run when you pressed CTRL-C. The break prompt
is indicated by the letters Br. Now you are in the Break Mode and
can use the commands listed below. All of these commands except
CONT can also be given after the Ok prompt. A CTRL-C given while in
the Break Mode returns you to Personal BASIC and the Ok prompt.

11.1.2 STEP

STEP lets you step through your program, line by line, as each
line is run. It shows you what the program is doing as it operates
in slow motion. Run BUGS and enter Break Mode with CTRL-C. Type
STEP after the Br prompt and press <cr>. Each time you press <cr>,
the program prints the next line before it is run and stops. The
next STEP prints the output of the line, if any, and the next line.
If you stopped at line 50, STEP produces this output:

Ok RUN

3
4
5
— Break
Br STEP
s 55
Br
s 20
Br
s 30
Br

at

< >
16
25

line 50

GOTO 20

N = 5

FOR X=l to N

27
64

11-2

Personal BASIC Tutorial 11.1 Program Debugging

Line 55 follows line 50 every five times through the loop, when
N is equal to 5. Continue running the program by giving the command
CONT after a Br prompt. Run BUGS a few times, break it with CTRL-C
and use STEP until you are familiar with its operation. Return to
the Ok prompt with CTRL-C given while in the Br prompt.

11.1.3 CONT

CONT means continue the program run. When you are in Break
Mode, program execution continues with the CONT command. Just type
CONT after a Br prompt. CONT continues running with the next line
number, not from the beginning of the program. CONT is the only
debugging command that cannot be used after the Ok prompt.

11.1.4 BREAK/UNBRBAK

BREAK causes the program to stop at any line number just before
running the line. The program line and any output are printed. The
program resumes with <cr> and runs until the next line number with a
break is reached. BREAK with no line number stops the program at
every line number, much like STEP. The UNBREAK command with no line
number specified removes all BREAKS. Insert a BREAK at line 55 in
program BUGS and run BUGS. This is the output:

Ok BREAK 55
Ok RON
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125

b 55 GOTO 20
Br

A <cr> restarts the program until it reaches line 55 again.
BREAK is useful when you want to see what happened after a specific
line runs. Return to the Ok prompt with CTRL-C and type UNBREAK to
remove the break.

11.1.5 TRACE/DNTRACB

The TRACE command produces the same output as BREAK, but TRACE
does not stop the program run. Each line traced is printed with the
output, but the program continues running until it ends or until you
enter Break Mode with a CTRL-C. TRACE output can be stopped with
CTRL-C and restarted with <cr>. TRACE is turned off with the
UNTRACE command. UNTRACE also turns TRON off.

11-3

Personal BASIC Tutorial 11.1 Program Debugging

11.1.6 TRON/TROFF

The TRON command prints each program line number in the order
it is run. Program output is also printed. The line numbers print
in square brackets, [50], TRON is useful if you suspect your
program is taking an incorrect path. It is also a good training aid
in understanding how a program runs statements. Delete line 55 from
program BUGS and run with the TRON command. This is your output:

Ok 55
Ok TRON
Ok RUN
[20] [30] [40]
150] [40] 2
150] [40] 3
[50] [40] 4
[50] [40] 5
[50] [60]
Ok TROFF

1
4
9
16
25

1
8
27
64
125

The line numbers in square brackets printed in the same order
they were run. The program output was printed just after each PRINT
statement in line 40.

If your program is long and the TRON output extends more than
one screen, press CTRL-C to stop the TRON output. Press <cr> to
continue the TRON output. Use TROFF to turn off TRON for future
program runs. UNTRACE and NEW also turn off TRON.

11.1.7 FOLLOW/UNFOLLOW

FOLLOW is especially useful if your program variables have
changing values. FOLLOW tells you whenever a variable you specify
has changed value and what the new value is. The FOLLOW output is
variable name, line number, and value. FOLLOW is turned off by the
command, UNFOLLOW.

We can use FOLLOW to follow the value of X in program BUGS.
Put line 55 (GOTO 20) back into program BUGS and run BUGS. Stop the
output with CTRL-C. Output can be resumed with <cr>. Depending on
where you stopped, the output looks like this:

11—A

Personal BASIC Tutorial 11.1 Program Debugging

Ok 55 GOTO 20
Ok FOLLOW X
Ok RON
[20][30]
Var X! =
[40] 1
[50]
Var XI =
[40] 2
[50]
Var X! =
[40] 3
[50]
Var X! =
— Break
Br

1 At line 30
1

2 At line 50
4

3 At line 50
9

4 At line 50
— at line 40

1

8

27
r-t

The first value of
variable X

The value of X
changes to 2

X changes again
and again and

The FOLLOW output includes the type of numeric variable. We
discussed these types in Section 3.1. In the example, the numeric
variable X has the data type of single precision, shown by an
exclamation mark, !. Single precision is also indicated if the
variable has no label following it, as in our examples.

Try FOLLOW with some of the other programs in your library.
You will see that FOLLOW can be very valuable in finding bugs around
var iables.

Some ^Fhings to Remember about Break Mode

• END returns you to Personal BASIC and the Ok prompt.

• A STOP statement in your program puts you into Break Mode at
the line number after the STOP line. A <cr> continues the
program.

• LIST and RUN can be used from the Br prompt.

• LIST your program to see what lines are set for TRACE or BREAK.
A t or b is printed to the left of each line number.

• All Break Mode commands except CONT can be given after the Ok
prompt.

11.2 Program Testing

A program is really not completed until it has been tested.
Some very large programs may never be completely free of program
errors. For example, a specific path in a program is never reached
until input X is made to the program. The program is tested, but
input X is not a part of the test input, since this input might
never happen. The program runs fine for six months and input X is

11-5

Personal BASIC Tutorial 11.2 Program Testing

given. The program enters the untested area and cannot handle X
correctly.

It has been said that the only real problem in programming is
getting the program to work correctly and then prove that it does.
In programming, there are no small errors; even the lack of a period
or hyphen could cause the entire program to fail. It is difficult
to define an objective for program testing, except to eliminate all
errors—sometimes an impossible task.

Explaining the psychology and science of program testing is
best left to the numerous programming texts available at your book
store. We will leave you with some hints that should help you test
your programs. The more time you spend in program testing, the more
confident you will be that the program is doing the task it was
designed to accomplish.

• As you plan and write the program, jot down testing ideas.

• Test every branch in the program.

• Test inputs should contain a wide sampling of both legal and
illegal inputs.

• If possible, use live or actual input samples.

• Let someone unfamiliar with the program use it. This also
tests your documentation (do not forget that).

• When you remove a bug, run all the tests again, because
sometimes a program change in one area affects another area.

• If everything looks fine in early testing, do not stop the test
procedure.

• If you are about to give up your search for a bug, get up and
walk around, eat, listen to music, watch the sky—anything but
looking at your program. Then make a fresh start.

End of Section 11

11-6

Dear Reader,

Here we are at the end of this tutorial book on Personal BASIC.
If you have been using your computer and doing the examples, you
should have a good start in learning how to program in BASIC. Even
though this is the end of the book, you have not arrived at the end
of BASIC. There is more to learn.

Look at the other Personal BASIC capabilities in the Personal
BASIC Language Reference Manual. Visit your local book stores,
computer stores, and library. You will find many books on BASIC
programming and programming in general. Some of the computer
magazines offer excellent articles and columns on programming
techniques.

We told you before that learning a programming language is like
learning how to speak a new language. Learn new statements and
commands (words), combine them into programs (sentences) and
practice writing programs (speaking), until you know the language
like a native.

When you have mastered Personal BASIC, consider learning
another programming language. Digital Research has a complete
assortment of languages tailored for your computer.

We hope to meet you again through the written word in another
Digital Research language programming book. Goodbye and happy
programming!

11-7

Appendix A
User's Glossary

address: Location in memory.

argument: Variable that the built-in function works on.

array: Collection of data items of the same data type. Term that
describes a form of storing and accessing data in memory, visualized
as matrices. The number of elements in an array is the number of
dimensions of the array. A one-dimensional array can be called a
list.

ASCII: Acronym for American Standard Code for Information
Interchange. ASCII is a standard code for the representation of the
numbers, letters, and symbols that appear on most keyboards.

^ assignment statement: Statement that assigns the value of an
expression on the right side of an equal sign to the variable name
on the left side of the equal sign. (A = B + 3).

boot: Initial start-up of a computer operating system after the
computer is turned on or after a system error.

Break Mode: Debugging mode for Personal BASIC. Entered with a
CTRL-C given while program is operating. The Br prompt indicates
that you are in Break Mode.

buffer: Area of memory that temporarily stores data during the
transfer of information.

bug: Error in a computer program.

built-in function: Subroutine that is part of Personal BASIC to
which you can pass values and receive the computed values. For
example, INT, RND.

byte: Unit of memory or disk storage that usually contains eight
bits.

CAPS LOCK key: Keyboard key used when typing BASIC lines. Produces
upper-case letters and lower-case numbers.

central processing unit: Brain of the computer, usually called CPU.
The central processing unit contains a control unit, an
arithmetic/logic unit and a storage unit.

character: Single symbol output and input. A character is usually
represented by a byte inside the computer or storage device. For
example, F, 6, +, I

code: Sequence of statements of a given computer language that make
up a program.

A-1

Personal BASIC Tutorial A User's Glossary

command: Instruction given to BASIC outside the program. For
example, SAVE, LIST, OLD.

compiler: Language translator that translates the text of a high-
level language into machine code (Is and Os) that the computer
understands.

concatenation: The joining of two or more strings together, end-to-
end .

constant: String or numeric value uiat does not change throughout
program execution.

control character: Nonprinting character combination that sends a
simple command to the operating system, Personal BASIC, or an
applications program. To enter a control character, press the
control (CTRL) key and the specified character at the same time.

CP/M: The operating system controlling the operation of Personal
BASIC. CP/M stands for Control System for Microprocessors.

CPU: See Central Processing Unit.

<cr>: Symbol meaning press the carriage return, RETURN, or Enter
key.

cursor: One-character symbol that can be moved anywhere on the
video screen. The cursor indicates where the next keystroke will be
placed.

data: Numbers, figures, names, symbols, etc.

debug: Find and remove errors from a program.

dimension: Number of elements in an array. A one-dimensional array
is a list of the elements in the array. A two-dimensional array can
be visualized as a matrix of rows and columns of storage space for
the elements of the array. A three-dimensional array can be thought
of as a geometric solid having volume.

disk, diskette: Magnetic media used to store information. Programs
and data are stored and retrieved like music on a record. The term
diskette usually refers to floppy disks 8 or 5 1/4 inches in
diameter. The term disk can refer to a diskette, a removable
cartridge disk, or a fixed hard disk.

disk drive: Peripheral device that reads and writes on hard or
floppy disks. CP/M assigns a letter to each drive.

element: Individual data item in an array.

execute a program: Start a programming running. When the program
is running, a sequence of instructions, or statements, is executing.

A-2

Personal BASIC Tutorial A User's Glossary

expression: Algebraic combination of variables, constants,
operators, and function references that evaluates to an integer,
real, or string value.

file: Collection of related records containing characters,
instructions, or data; usually stored on a disk under a unique file
specification.

file number: Unique identification number you assign to a file with
the OPEN statement. File numbers can be any numeric expression.

filename: Name assigned to a file. The filename can be 1 to 8
alpha, numeric, and/or special characters. The filename should tell
something about the file.

filetype: Letters following the filename indicating the type of
file. Filetypes can be up to three characters long or omitted.

floating point: Value expressed in decimal notation that can
include exponential notation; a real number.

floppy disk: Flexible magnetic disk used to store information.
Sizes are 5 1/4 and 8 inches in diameter.

flowchart: Graphic diagram using special symbols to indicate the
input, processing, output, and flow of a program.

function: See built-in function and user-defined function.

high-level language: Computer instructions written in procedural
form or in the language of the problem. Many machine instructions
are generated for each high-level statement. For example, BASIC,
COBOL, Pascal.

I/O: Abbreviation for input/output.

input: Data entered into an executing program from the terminal or
from external storage, or from READ/DATA statements.

integer: Positive or negative whole number with no decimal point

interpreter: Computer program that translates and executes each
source language statement in turn every time the source program is
executed. Personal BASIC is an interpretive BASIC.

key: Specific field of a record on which processing is performed

line number: The first item in a line of BASIC coding. Legal
range is 0 to 65529.

listing: List of the source program. The LIST command produces a
list of the Personal BASIC program in working storage.

load: Move programs or data from permanent storage into memory.

A-3

Personal BASIC Tutorial A User's Glossary

loop: Series of program instructions repeated a specific number of
times. An endless loop is a program error.

numeric constant: Real or integer quantity that does not vary in
the program.

numeric variable: Real or integer identifier to which various
numeric quantities can be assigned during program execution.

open: Announcement to the operating system that a resource, usually
a disk file, is to be used.

operating system: Collection of programs that supervises the
execution of other programs and the management of computer
resources. An operating system provides an orderly input/output
environment between the computer and its peripheral devices.
Personal BASIC runs under the CP/M operating system, which is
compatible with many different computer systems.

output: Data that the processor sends to the console, printer,
disk, or other storage media, after processing is complete.

peripheral device: Devices external to the CPU. Terminals,
printers, and disk drives are peripheral devices.

permanent storage: Area to store programs and data outside of RAM.
Usually is on disk or tape.

precedence: the order that arithmetic formulas are processed by
Personal BASIC.

program: Series of coded instructions that tell a computer what
operations to perform in solving a problem.

prompt: Characters displayed on the video screen to help the user
decide what action to take. The Personal BASIC prompts are Ok, Br,
and Ed.

RAM: See random access memory.

random access: Method of entering a file at any record number,
without search from the first record.

random access file: File structure where data can be accessed in a
random manner, no matter where it is located in the file.

random access memory: Temporary storage internal to your computer.
Also called working storage. Common term for random access memory
is RAM. Size of RAM is measured in Ks, one K = 1024 bytes.

random number: Number selected at random from a set of numbers.
The RND function returns a random number in Personal BASIC.

real number: Numeric value specified with a decimal point, same as
floating point notation.

A-4

Personal BASIC Tutorial A User's Glossary

record: Portion of a file containing related information such as a
name and address. A file contains one or more records and is
usually stored on disk.

record number: Position of a specific record in a fixed-length
file, relative to record number 1. A key by which a specific record
in a fixed file is accessed randomly.

reserved word: Keyword that has specific meaning to a given
language or operating system. Usually, variables cannot use a
reserved word as a name.

run a program: Start a program executing. When the program is
running, the statements are being executed by the Personal BASIC
interpreter .

sequential access: File structure where data is accessed serially,
one record at a time, from the first record. Data can only be added
^ to the end of the file and cannot be deleted. All magnetic tape

files and some disk files are sequential access files.

SHIFT Key: Keyboard key that causes printing of upper-case
characters. Affects all key positions.

source program: The program instructions as typed by the
programmer.

statement: Coded instruction using specific keywords in a defined
format. Examples in Personal BASIC are PRINT, INPUT, READ.

storage: See permanent storage and temporary storage.

string variable: Identifier of a group of characters to which
varying values can be assigned during program execution. Examples,
NAME$, R367$, X$

subroutine: Portion of a program that performs a specific task, but
is logically separate from the main program flow. Subroutines can
be used when the same sequence of code is used more than once. The
main program flow branches to the subroutine, continues through the
subroutine, and then branches back to the main program flow.

subscript: Integer expression that specifies the position of an
element in an array.

syntax: Rules for structuring statements and commands for an
operating system or programming language.

syntax error: Results from entering instructions not according to
format rules (syntax).

temporary storage: See random access memory.

A-5

Personal BASIC Tutorial A User's Glossary

trace: Option used for debugging during a program run. The trace
option usually lists each line of code as it executes to help the
programmer debug the program.

user-defined function: Expression created and given a function name
by the user. The function performs a specific task and is called
into action by referencing the function by name.

value: Quantity expressed by an integer or real number.

variable: Name to which the program can assign a numeric value or a
string. Examples, A, TEST$, G849, E$

variable name: Same as variable.

working storage: See random access storage.

End of Appendix A

A-6

Appendix B
Annotated Bibliography

B.I Book References

Finkel, Leroy, and Jerald R. Brown. Data File Programming in BASIC.
New York: John Wiley & Sons, Inc., 1981.

A text with detailed explanations of data file programming and
how to set up your files on disk.

Lien, David. The BASIC Handbook. 2nd ed . San Diego: Compusoft
Publishing Co., 1982.

A handbook explaining the BASIC statements and commands used in
various versions of BASIC. Very useful if you are translating
from one BASIC to another.

Moulton, Peter. Foundations of Programming Through BASIC. New
York: John Wiley & Sons, Inc., 1979.

One of the few texts that teaches BASIC using the structured
approach. This book might be hard to locate.

Nagin, Paul, and Henry Ledgard. BASIC With Style. Rochell Park,
NJ: Hayden Book Company, Inc., 1978.

A BASIC text motivated by Strunk's and White's The Elements of
Style . A light-hearted approach to writing carefully
constructed, readable, BASIC programs.

Weinberg, Gerald. The Psychology of Computer Programming. New
York: Van Nostrand Reinhold Co., 1971

A classic programming text for anyone serious about
programming .

B.2 Magazine References

"BYTE Magazine." BYTE Publications, Inc. 70 Main Street,
Peterborough, NH 03458

A thick magazine devoted to microcomputers. It is more
technical than most magazines. The advertisements are numerous
and educational. BYTE contains product reviews, columns, and
articles .

B-1

Personal BASIC Tutorial B.2 Magazine References

"Creative Computing Magazine." Ahl Computing, Inc. P.O. Box 789-M,
Morristown, NJ 07960

A microcomputing magazine with many product reviews, programs,
and programming articles. Most of the content is
understandable to the beginner.

"Datamation." 875 Third Avenue, New York, NY 10022

Datamation deals with the computer field in general. The
emphasis is on mainframes, but there are some articles on
microcomputers. The magazine is aimed at practicing
professionals, but beginners will find parts of it interesting.

"Infoworld Magazine." Popular Computing, Inc. 375 Cochituate Road,
Framingham, MA 01701

A weekly magazine devoted to the microcomputer. It contains
news, columns, and reviews of hardware and software.

"Interface Age Magazine." 16704 Marquardt Avenue, Cerritos, CA
90701

A magazine featuring the business use of microcomputers. The
magazine has articles on business applications and reviews of
hardware and software.

End of Appendix B

B-2

Appendix C
Answers to Exercises

C.I Answers to Exercises in Section 5

10 REM EXERCISE 1, SECTION 5
20 READ A
30 IF A=999 THEN 60
40 SUM=SUM+A
50 GOTO 20
60 PRINT "SUM IS"SUM
70 PRINT "AVERAGE IS"SUM/6
80 DATA 474,651,562,701,631,568,999
90 END

OK RUN
SUM IS 3587
AVERAGE IS 597.833

10 REM EXERCISE 2, SECTION 5
20 INPUT A
30 IF A=999 THEN 60
40 SUM-SUM+A
50 GOTO 20
60 PRINT "THE SUM IS"SUM"AND THE AVERAGE IS"SUM/6
70 END

Ok RUN
? 474
? 651 - .
? 562
? 701
? 631
? 568
? 999
THE SUM IS 3587 AND THE AVERAGE IS 597.833
Ok

C-1

Personal BASIC Tutorial C.I Answers to Exercises

10 REM EXERCISE 3, SECTION 5
20 INPUT "NAMEM;NAME$
30 INPUT "STREET ADDRESS";STREETS
40 INPUT "CITY";CITY$
50 INPUT "STATE";STATE$
60 INPUT "ZIP";ZIP$
70 PRINT
80 PRINT NAME$
90 PRINT TAB(5)STREETS
100 PRINT TAB(10)CITY$", ";
110 PRINT STATES"
120 PRINT ZIP$
130 END

Ok RUN
NAME? ROBERT S. JONES
STREET? 140 OAK AVENUE
CITY? SAND CITY
STATE? CA
ZIP? 94bb2

ROBERT S. JONES
140 OAK AVENUE

SAND CITY, CA 94562

C.2 Answers to Exercises in Section 6

10 REM EXERCISE 1, SECTION 6
20 FOR 1=2 TO 1000 STEP 2
30 SUM=SUM+I
40 NEXT I
50 PRINT "THE SUM IS";SUM
60 END

Ok RUN
THE SUM IS 250500

10 REM EXERCISE 2, SECTION 6
20 FOR A=l TO 3
30 FOR B=l TO 3
40 FOR C=l TO 3
50 PRINT A;B;C
60 NEXT C
70 NEXT B
80 NEXT A
90 END

C-2

Personal BASIC Tutorial C.2 Answers to Exercises

3.
10 REM EXERCISE 3, SECTION 6
20 REM SET 1ST NUMBER AS LARGEST AND SMALLEST SO FAR
30 INPUT N:C=1
40 LARGEST=N:SMALLEST=N
50 INPUT N
60 IF N=999 THEN 120
65 REM COUNT OF NUMBERS
70 C=C+1
80 REM IS NUMBER LARGEST OR SMALLEST SO FAR?
90 IF N>LARGEST THEN LARGEST=N
100 IF N<SMALLEST THEN SMALLEST=N
110 GOTO 50
120 PRINT "THE SMALLEST NUMBER IS";SMALLEST
130 PRINT "THE LARGEST NUMBER IS";LARGEST
140 PRINT C"NUMBERS WERE ENTERED"
150 END

C.3 Answers to Exercises in Section 7

10 REM EXERCISE 1, SECTION 7
20 INPUT ST$
30 L=LEN(ST$)
40 FOR X=l to L
50 C$=MID$(ST$,X,1)
60 IF C$="B" THEN N=N + 1
70 NEXT X
80 PRINT "THERE ARE";N;"B'S IN THE STRING."
90 END

Ok RUN
? RABBIT
THERE ARE 2 B'S IN THE STRING.

10 REM EXERCISE 2, SECTION 7
20 INPUT ST$
30 A$=LEFT$(ST$,3)
40 B$=RIGHT$(ST$,5)
50 C$=MID$(ST$,4,5)
60 PRINT B$+C$+A$
70 END

Ok RUN
? ONE TWO THREE
THREE TWO ONE

End of Appendix C

C-3

C

v, . Appendix D
Personal BASIC Error Messages

-•4.-"" '

Table D-l lists error numbers and their meanings.

Table D-l. Personal BASIC Error Messages

Number Message

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Your NEXT statement needs a matching FOR

Something is wrong

RETURN statement needs a matching GOSUB

READ statement ran out of data

Function call not allowed

The number is too large

Program is too large for memory

Not used

Subscript refers to element outside the array

You defined an array more than once

You cannot divide by zero or raise zero to a
negative power

Statement is illegal in direct mode

Types of values do not match

Not used

Strings cannot be over 255 characters long

String expression is too long or too complex

CONT works only in Break Mode

Function needs prior definition with DEF FN

Not used

RESUME statement found before error routine
entered

D-1

Personal BASIC Tutorial D Personal BASIC Error Messages

Table D-l. (continued)

Number Message

21 Not used

22 Expression has operator with no following operand

23 Program line too long

24-49 Not used

50 FIELD statement caused overflow

51 Not used

52 File number or filename invalid

53 File not found on disk drive specified

54 File mode is not valid

55 You cannot OPEN or KILL a file already open

56 File number in use

57 Disk input/output error, restart your operation
(MP/M™)

58 Filename exists

59 Not used

60 Not used

61 Disk is full

62 You have reached end-of-file

63 The record number in PUT or GET is more than 32767
or 0

64 The filename is invalid

65 Invalid character :X: in program file

66 File being read has statement with no line number

67 Not used

68-98 Not used

99 —Break—

D-2

Personal BASIC Tutorial D Personal BASIC Error Messages

Table D-l. (continued)

Number Message

101 Program exceeds memory size

102 ON statement is out of range

103 - A line number is expected here

104 A variable is required

105 Not used

106 Line number does not exist

107 Number is too large for an integer

108 Input data is not valid, restart input from first
item

109 STOP

110 You have nested subroutine calls too deep

111-201 Not used

202 Command not allowed here

203 Line number is required

204 Your FOR statement needs a NEXT or WHILE needs a
WEND

205 Your NEXT statement needs a FOR or WEND needs a
WHILE

206 A comma is expected

207 A parenthesis is expected

208 OPTION BASE must be 0 or 1

209 Statement end is expected

210 Too many arguments in your list

211 Not used

212 Cannot redefine variable(s)

213 Function defined more than once

D-3

Personal BASIC Tutorial D Personal BASIC Error Messages

Table D-l. (continued)

Number Message

214 You are trying to jump into a loop

221 System error #X, please restart (1 through 4)

'End of Appendix D

D-4

Index

ABS, 8-3
argument , 8-2, 8-5
arithmetic operations, 2-3, 3-5
array
defined, 9-1
example, 9-2
redimensioning, 9-4

ASCII code, 7-6

B

BASIC
defined, 1-2
system loading, 2-1

BREAK, 11-3
Break Mode, 11-1, 11-5
Break Prompt, 11-2
bug, 11-1
built-in function
ABS, 8-3
INT, 8-2
RND, 8-3
SGN, 8-2
SQR, 8-2

calculations
order, 3-5
parentheses rules, 3-6

carpet calculation, 8-6/8-7
caps lock key, 2-2
CLEAR, 7-9

example, 7-8
CLOSE, 10-2
COBOL, 1-3
command

format rules, 2-6
concatenation, 7-3, 7-7
CONT, 11-3
CP/M, 1-3, 1-4, 2-1 *
<cr>, 1-1, 2-1
CTRL-C, 1-1, 11-2

DATA, 5-3
READ/DATA, 5-3

debug, 11-1
debugging, 4-1, 11-1
DBF, 8-6
DELETE, 2-13
DIM, 9-3
dimension, 9-2, 9-3
DIR, 2-9
double precision, 3-3

B

E notation, 3-7
edit line, 4-2
Edit Mode, 4-2

subcommands, 4-1
EDIT
deleting characters, 4-3
ending and restarting, 4-6
inserting characters, 4-3
moving the cursor, 4-2
replacing characters, 4-5
searching for characters, 4-5

ed i t i ng
need for, 4-1

element, 9-2
ELSE, 6-1/6-3
END, 2-4, 10-3
end-of-file, 6-3/6-4, 10-2/10-4
ERA, 2-14
ERASE, 9-4
error messages, 6-4
exponentiation, 3-5

FIELD, 10-5, 10-6
files, 10-1
random, 10-4
sequential, 10-2

filename, 2-8/2-14
filetype, 2-8/2-14
FOLLOW, 11-4
FOR/NEXT, 6-6, 9-3

examples, 6-6/6-10, 7-3, 7-8, 9-3
FOR/NEXT loop
nested, 6-8, 9-3

Index—1

FORTRAN, 1-3
functions, 8-1

built-in, 8-2
mathematical, 8-5
user-defined, 8-6

•

6

GET, 10-6

I

IF, 6-1
IF/THEN, 6-1
examples, 6-2, 6-3

IF/THEN/ELSE, 6-1, 6-4
example, 6-3

INPUT, 5-1, 6-3
example, 5-1

input/output disk, 10-1
INT, 8-2
integer, 3-3, 8-2
interest calculation, 6-10
inventory files, 10-1

language translation, 7-6
LEFTS, 7-2
LEN, 7-1/7-3, 7-8
LET, 5-1
line feed key, 6-3
line numbers, 2-5
LIST, 2-5, 2-12, 11-5
logical line, 6-3
looping, 6-4
loops

nested, 6-8, 6-9
LSET, 10-5

MERGE, 2-11
MID$, 7-2

examples, 7-3, 7-8

NAME, 2-14
NEW, 2-8
NEXT, see FOR/NEXT

OLD, 2-10, 2-13
OPEN, 10-2, 10-4, 10-6
OPTION BASE, 9-4

parentheses, 3-6
Pascal, 1-3
permanent storage, 2-7, 2-8
physical line, 6-3
PL/I, 1-3
precedence, 3-6
PRINT, 2-2, 5-7
examples, 2-2, 2-3, 5-8

PRINT USING, 5-9
program line

logical, 6-3
physical, 6-3

program
debugging, 11-1
termination, 6-4
testing, 11-5

programming, 1-2
prompts,
BASIC (Ok), 2-1
break (Br), 11-2
edit (Ed), 4-2

PUT, 10-5

RAM, 2-7, 10-1, 10-4
Random Access Memory, 2-7
random

buffer, 10-4/10-6
numbers, 8-3

READ/DATA, 5-3, 10-1
examples, 5-3, 5-5, 7-6
rules for use, 5-6

record, 10-1, 10-2
key, 10-2

REM, 2-4
RENUM, 2-6

lndex-2

REPLACE, 2-10
RESTORE, 5-6
examples, 5-6, 7-6

RIGHT$, 7-2
RND, 8-3

examples, 8-3, 8-4, 8-5
RUN, 2-4, 2-12, 11-5

S

SAVE, 2-4, 2-9
scientific notation, 3-7
SGN, 8-2
SHIFT key, 2-2
simulation, 8-3
single precision, 3-3
SQR, 8-2
statement

format rules, 2-5
STEP, 11-2
STOP, 11-5
storage

permanent, 2-7, 2-8
working, 2-7, 2-8

STR$, 7-4/7-5
strings, 7-1
concatenation, 7-7
reversing the order, 7-8

string comparisons, 7-5
string variables, 3-4

comparing, 7-5
printing, 7-1

subscripts, 9-1
syntax error, 4-6, 11-1

TAB, 5-9
temperature conversion, 8-6
THEN, see IF/THEN
TRACE, 11-3
TROFF, 11-4
TRON, 11-4

UNBREAK, 11-3
UNFOLLOW, 11-4
UNTRACE, 11-3

VAL, 7-3/7-4
variable

assigning values, 3-1
defined, 3-1
double precision, 3-3
integer, 3-3
name, 3-1
numeric, 3-1
numeric type, 3-3
rules, 3-4
single precision, 3-3, 11-5
string, 3-4, 7-1
subscripted, 9-1
types, 3-3

WHILE/WEND, 6-4/6-5
working storage, 2-7, 2-8
WRITE, 10-2

lndex-3

c

